Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance

J Neurochem. 2007 Sep;102(6):1713-1726. doi: 10.1111/j.1471-4159.2007.04675.x. Epub 2007 Jun 6.

Abstract

Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Autonomic Pathways / anatomy & histology
  • Autonomic Pathways / physiology
  • Basal Metabolism / drug effects
  • Basal Metabolism / physiology*
  • Brain / anatomy & histology
  • Brain / physiology
  • Brain Ischemia / metabolism*
  • Brain Ischemia / physiopathology
  • Brain Ischemia / prevention & control
  • Central Nervous System / physiology*
  • Energy Metabolism / physiology*
  • Hibernation / drug effects
  • Hibernation / physiology*
  • Mammals / physiology*
  • Receptors, Cell Surface / metabolism

Substances

  • Receptors, Cell Surface