Skip to main content
Log in

Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Meldrum B. S. (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S-15S.

    PubMed  CAS  Google Scholar 

  2. Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  3. Lucas D. R. and Newhouse J. P. (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Opthalmol. 58, 193–201.

    CAS  Google Scholar 

  4. Olney J. W. (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  5. Olney J. W. and de Gubareff T. (1978) Glutamate neurotoxicity and Huntington’s chorea. Nature 271, 557–559.

    Article  PubMed  CAS  Google Scholar 

  6. Rothman S. M. (1983) Synaptic activity mediates death of hypoxic neurons. Science 220, 536–537.

    Article  PubMed  CAS  Google Scholar 

  7. Simon R. P., Swan J. H., Griffiths T. and Meldrum B. S. (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850–852.

    Article  PubMed  CAS  Google Scholar 

  8. Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  9. Tymianski M. (1996) Cytosolic calcium concentrations and cell death in vitro. Adv. Neurol. 71, 85–105.

    PubMed  CAS  Google Scholar 

  10. Tymianski M. and Tator C. H. (1996) Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38, 1176–1195.

    Article  PubMed  CAS  Google Scholar 

  11. Choi D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469.

    Article  PubMed  CAS  Google Scholar 

  12. Sattler R. and Tymianski M. (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 78, 3–13.

    Article  PubMed  CAS  Google Scholar 

  13. Weiss J. H., Sensi S. L., and Koh J. Y. (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21, 395–401.

    Article  PubMed  CAS  Google Scholar 

  14. Weiss J. H. and Sensi S. L. (2000) Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23, 365–371.

    Article  PubMed  CAS  Google Scholar 

  15. Yu S. P., Yen C. H., Sensi S. L., et al. (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278, 114–117.

    Article  PubMed  CAS  Google Scholar 

  16. Berdichevsky E., Riveros N., Sanchez-Armass S., and Orrego F. (1983) Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci. Lett. 36, 75–80.

    Article  PubMed  CAS  Google Scholar 

  17. Choi D. W., Maulucci-Gedde M., and Kriegstein A. R. (1987) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  18. Choi D. W. (1987) Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  19. Gill R. and Lodge D. (1997) Pharmacology of AMPA antagonists and their role in neuroprotection. Int. Rev. Neurobiol. 40, 197–232.

    PubMed  CAS  Google Scholar 

  20. Blaustein M. P. (1988) Calcium transport and buffering in neurons. Trends Neurosci. 11, 438–443.

    Article  PubMed  CAS  Google Scholar 

  21. Sattler R. and Tymianski M. (1998) Calcium and cellular death, in Integrative Aspects of Calcium Signaling (Verkhratsky A. and Toescu E. C., eds.), Plenum Press, New York, pp. 267–290.

    Google Scholar 

  22. Lees K. R. (1998) Does neuroprotection improve stroke outcome? Lancet 351, 1447–1448.

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh A. and Greenberg M. E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  24. Tymianski M., Charlton M. P., Carlen P. L., and Tator C. H. (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13, 2085–2104.

    PubMed  CAS  Google Scholar 

  25. Sattler R., Charlton M. P., Hafner M., and Tymianski M. (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J. Neurochem. 71, 2349–2364.

    Article  PubMed  CAS  Google Scholar 

  26. Sattler R. et al. (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848.

    Article  PubMed  CAS  Google Scholar 

  27. Bading H., Ginty D. D., and Greenberg M. E. (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.

    Article  PubMed  CAS  Google Scholar 

  28. Catterall W. A. (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16, 521–555.

    Article  PubMed  CAS  Google Scholar 

  29. Tsien R. W., Lipscombe D., Madison D., Bley K., and Fox A. (1995) Reflections on Ca(2+)-channel diversity, 1988–1994. Trends Neurosci. 18, 52–54.

    Article  PubMed  CAS  Google Scholar 

  30. Hollmann M. Structure of Ionotropic glutomate receptors, in Ionotropic Glutamate Receptors in the CNS (Jonas P. and Monyer H., eds.), Springer Verlag, Berlin, pp. 1–98.

  31. Monyer H., Seeburg P. H., and Wisden W. (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799–810.

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi M. et al. (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intronexon structure determines position and efficiency. Cell 75, 1361–1370.

    Article  PubMed  CAS  Google Scholar 

  33. Sommer B., Kohler M., Sprengel R., and Seeburg P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.

    Article  PubMed  CAS  Google Scholar 

  34. Jonas P. and Burnashev N. (1995) Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990.

    Article  PubMed  CAS  Google Scholar 

  35. Kim J. H. and Huganir R. L. (1999) Organization and regulation of proteins at synapses. Curr. Opin. Cell Biol. 11, 248–254.

    Article  PubMed  CAS  Google Scholar 

  36. Garner C. C., Nash J., and Huganir R. L. (2000) PDZ domains in synapse assembly and signalling. Trends Cell. Biol. 10, 274–280.

    Article  PubMed  CAS  Google Scholar 

  37. Scannevin R. H. and Huganir R. L. (2000) Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141.

    Article  PubMed  CAS  Google Scholar 

  38. Ziff E. B. (1997) Enlightening the postsynaptic density. Neuron 19, 1163–1174.

    Article  PubMed  CAS  Google Scholar 

  39. Torres R. et al. (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463.

    Article  PubMed  CAS  Google Scholar 

  40. Ye B. et al. (2000) GRASP-1: a neuronal Ras-GEF associated with the AMPA receptor/GRIP complex. Neuron 26, 603–617.

    Article  PubMed  CAS  Google Scholar 

  41. Sheng M. and Pak D. T. (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755–778.

    Article  PubMed  CAS  Google Scholar 

  42. Cotton J. L. and Partin K. M. (2000) The contributions of GluR2 to allosteric modulation of AMPA receptors. Neuropharmacology 39, 21–31.

    Article  PubMed  CAS  Google Scholar 

  43. Malinow R., Mainen Z. F., and Hayashi Y. (2000) LTP mechanisms: from silence to fourlane traffic. Curr. Opin. Neurobiol. 10, 352–357.

    Article  PubMed  CAS  Google Scholar 

  44. Wang Y. T. and Linden D. J. (2000) Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647.

    Article  PubMed  CAS  Google Scholar 

  45. Xia J., Chung H. J., Wihler C., Huganir R. L., and Linden D. J. (2000) Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510.

    Article  PubMed  CAS  Google Scholar 

  46. Lerma J. (1999) Kainate receptors in lonotropic Glutamate Receptors in the CNS (Jonas P. and Monyer H., eds.), Springer Verlag, Berlin, pp. 275–308.

    Google Scholar 

  47. Egebjerg J. and Heinemann S. F. (1993) Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc. Natl. Acad. Sci. USA 90, 755–759.

    Article  PubMed  CAS  Google Scholar 

  48. Kohler M., Burnashev N., Sakmann B., and Seeburg P. H. (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500.

    Article  PubMed  CAS  Google Scholar 

  49. Ruano D., Lambolez B., Rossier J., Paternain A. V., and Lerma J. (1995) Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14, 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  50. Kornau H. C., Schenker L. T., Kennedy M. B., and Seeburg P. H. (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  51. Garcia E. P. et al. (1998) SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21, 727–739.

    Article  PubMed  CAS  Google Scholar 

  52. Hume R. I., Dingledine R., and Heinemann S. F. (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031.

    Article  PubMed  CAS  Google Scholar 

  53. Petralia R. S., Rubio M. E., and Wenthold R. J. (1999) Cellular and subcellular distribution of glutamate receptors, in Ionotropic Glutamate Receptors in the CNS (Jonas P. and Monyer H., eds.), Springer Verlag, Berlin, pp. 143–174.

    Google Scholar 

  54. Kondo M., Sumino R., and Okado H. (1997) Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. J. Neurosci. 17, 15701–1581.

    Google Scholar 

  55. Pruss R. M., Akeson R. L., Racke M. M., and Wilburn J. L. (1991) Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7, 509–518.

    Article  PubMed  CAS  Google Scholar 

  56. Turetsky D. M. et al. (1994) Cortical neurones exhibiting kainate-activated Co2+ uptake are selectively vulnerable to AMPA/kainate receptor-mediated toxicity. Neurobiol. Dis. 1, 101–110.

    Article  PubMed  CAS  Google Scholar 

  57. Brorson J. R., Manzolillo P. A., and Miller R. J. (1994) Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci. 14, 187–197.

    PubMed  CAS  Google Scholar 

  58. Geiger J. R. et al. (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204.

    Article  PubMed  CAS  Google Scholar 

  59. Brorson J. R., Bleakman D., Chard P. S., and Miller R. J. (1992) Calcium directly permeates kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured cerebellar Purkinje neurons. Mol. Pharmacol. 41, 603–608.

    PubMed  CAS  Google Scholar 

  60. Jonas P., Racca C., Sakmann B., Seeburg P. H., and Monyer H. (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289.

    Article  PubMed  CAS  Google Scholar 

  61. Vandenberghe W., Robberecht W., and Brorson J. R. (2000) AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J. Neurosci. 20, 123–132.

    PubMed  CAS  Google Scholar 

  62. Jia Z. et al. (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956.

    Article  PubMed  CAS  Google Scholar 

  63. Iihara K. et al. (2001) The influence of glutamate receptor 2 expression on excitotoxicity in GluR2 null mutant mice. J. Neurosci. 21, 2224–2239.

    PubMed  CAS  Google Scholar 

  64. Feldmeyer D. et al. (1999) Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat. Neurosci. 2, 57–64.

    Article  PubMed  CAS  Google Scholar 

  65. Kask K. et al. (1998) The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proc. Natl. Acad. Sci. USA 95, 13,777–13,782.

    Article  CAS  Google Scholar 

  66. Brusa R. et al. (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680.

    Article  PubMed  CAS  Google Scholar 

  67. Tanak H., Grooms S. Y., Bennett M. V., and Zukin R. S. (2000) The AMPAR subunit GluR2: still front and center-stage. Brain Res. 886, 190–207.

    Article  Google Scholar 

  68. Pellegrini-Giampietro D. E., Zukin R. S., Bennett M. V., Cho S., and Pulsinelli W. A. (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc. Natl. Acad. Sci. USA 89, 10,499–10,503.

    Article  CAS  Google Scholar 

  69. Gorter J. A. et al. (1997) Global ischemia induces downregulation of Glur2 and mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 17, 6179–6188.

    PubMed  CAS  Google Scholar 

  70. Oguro K. et al. (1999) Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. J. Neurosci. 19, 9218–9227.

    PubMed  CAS  Google Scholar 

  71. Frank L. et al. (1995) Unchanged balance between levels of mRNA encoding AMPA glutamate receptor subtypes following global cerebral ischemia in the rat. Acta Neurol. Scand. 92, 337–343.

    Article  PubMed  CAS  Google Scholar 

  72. Gold S. J., Hennegriff M., Lynch G., and Gall C. M. (1996) Relative concentrations and seizure-induced changes in mRNAs encoding three AMPA receptor subunits in hippocampus and cortex. J. Comp. Neurol. 365, 541–555.

    Article  PubMed  CAS  Google Scholar 

  73. Condorelli D. F. et al. (1994) Changes in gene expression of AMPA-selective glutamate receptor subunits induced by status epilepticus in rat brain. Neurochem. Int. 25, 367–376.

    Article  PubMed  CAS  Google Scholar 

  74. Ying H. S. et al. (1997) Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainate-induced death. J. Neurosci. 17, 9536–9544.

    PubMed  CAS  Google Scholar 

  75. Schauwecker P. E. (2000) Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res. 884, 116–128.

    Article  PubMed  CAS  Google Scholar 

  76. Yang D. D. et al. (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865–870.

    Article  PubMed  CAS  Google Scholar 

  77. Song I. et al. (1998) Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400.

    Article  PubMed  CAS  Google Scholar 

  78. Osten P. et al. (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110.

    Article  PubMed  CAS  Google Scholar 

  79. Nishimune A. et al. (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97.

    Article  PubMed  CAS  Google Scholar 

  80. Noel J. et al. (1999) Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376.

    Article  PubMed  CAS  Google Scholar 

  81. Hu B. R. et al. (1998) Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J. Neurosci. 18, 625–633.

    PubMed  CAS  Google Scholar 

  82. Wakabayashi K. et al. (1999) Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol. Aging 20, 287–295.

    Article  PubMed  CAS  Google Scholar 

  83. Lissin D. V., Carroll R. C., Nicoll R. A., Malenka R. C., and von Zastrow M. (1999) Rapid, activation-induced redistribution of ionotropic glutamate receptor in cultured hippocampal neurons. J. Neurosci. 91, 1263–1272.

    Google Scholar 

  84. Lerma J., Paternain A. V., Naranjo J. R., and Mellstrom B. (1993) Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 11,688–11,692.

    Article  CAS  Google Scholar 

  85. Patneau D. K., Vyklicky L., and Mayer M. L. (1993) Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509.

    PubMed  CAS  Google Scholar 

  86. Paternain A. V., Morales M., and Lerma J. (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189.

    Article  PubMed  CAS  Google Scholar 

  87. Wilding T. J. and Huettner J. E. (1995) Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzo-diazepines. Mol. Pharmacol. 47, 582–587.

    PubMed  CAS  Google Scholar 

  88. Vignes M. and Collingridge G. L. (1997) The synaptic activation of kainate receptors. Nature 388, 179–182.

    Article  PubMed  CAS  Google Scholar 

  89. Chittajallu R., Braithwaite S. P., Clarke V. R., and Henley J. M. (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol. Sci. 20, 26–35.

    Article  PubMed  CAS  Google Scholar 

  90. Contractor A., Swanson G., and Heinemann S. F. (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209–216.

    Article  PubMed  CAS  Google Scholar 

  91. Bortolotto Z. A. et al. (1999) Kainate receptors are involved in synaptic plasticity. Nature 402, 297–301.

    Article  PubMed  CAS  Google Scholar 

  92. Nadler J. V., Perry B. W., Gentry C., and Cotman C. W. (1981) Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid. J. Comp. Neurol. 196, 549–569.

    Article  PubMed  CAS  Google Scholar 

  93. Ben-Ari Y. (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403.

    Article  PubMed  CAS  Google Scholar 

  94. Mulle C. et al. (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392, 601–605.

    Article  PubMed  CAS  Google Scholar 

  95. Bernard A. et al. (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur. J. Neurosci. 11, 604–616.

    Article  PubMed  CAS  Google Scholar 

  96. Paschen W., Blackstone C. D., Huganir R. L., and Ross C. A. (1994) Human GluR6 kainate receptor (GRIK2): molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics 20, 435–440.

    Article  PubMed  CAS  Google Scholar 

  97. Rubinsztein D. C. et al. (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc. Natl. Acad. Sci. USA 94, 3872–3876.

    Article  PubMed  CAS  Google Scholar 

  98. Charara A., Blankstein E., and Smith Y. (1999) Presynaptic kainate receptors in the monkey straiatum. Neuroscience 91, 1195–1200.

    Article  PubMed  CAS  Google Scholar 

  99. MacDonald M. E. et al. (1999) Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 53, 1330–1332.

    PubMed  CAS  Google Scholar 

  100. Seeburg P. H., Higuchi M., and Sprengel R. (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Brain Res. Rev. 26, 217–229.

    Article  PubMed  CAS  Google Scholar 

  101. Sailer A. et al. (1999) Generation and analysis of GluR5(Q636R) kainate receptor mutant mice. J. Neurosci. 19, 8757–8764.

    PubMed  CAS  Google Scholar 

  102. Vissel B. et al. (2001) The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Neuron 29, 217–227.

    Article  PubMed  CAS  Google Scholar 

  103. Bergold P. J., Casaccia-Bonnefil P., Zeng X. L., and Federoff H. J. (1993) Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Proc. Natl. Acad. Sci. USA 90, 6165–6169.

    Article  PubMed  CAS  Google Scholar 

  104. Telfeian A. E., Federoff H. J., Leone P., During M. J., and Williamson A. (2000) Overexpression of GluR6 in rat hippocampus produces seizures and spontaneous nonsynaptic bursting in vitro. Neurobiol Dis 7, 362–374.

    Article  PubMed  CAS  Google Scholar 

  105. Savinainen A., Garcia E. P., Dorow D., Marshall J., and Liu Y. F. (2001) Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via postsynaptic density protein 95. J. Biol. Chem. 10, 11,382–11,386.

    Google Scholar 

  106. Zukin R. S. and Bennett M. V. (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306–313.

    Article  PubMed  CAS  Google Scholar 

  107. Ishii T. et al. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  108. Laube B., Kuhse J., and Betz H. (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961.

    PubMed  CAS  Google Scholar 

  109. Sakurada K., Masu M., and Nakanishi S. (1993) Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blockers by a single amino acid substitution in the N-methyl-D-aspartate receptor. J. Biol. Chem. 268, 410–415.

    PubMed  CAS  Google Scholar 

  110. Kuner T., Wollmuth L. P., Karlin A., Seeburg P. H., and Sakmann B. (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352.

    Article  PubMed  CAS  Google Scholar 

  111. Burnashev N. et al. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257, 1415–1419.

    Article  PubMed  CAS  Google Scholar 

  112. Schneggenburger R. and Ascher P. (1997) Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177.

    Article  PubMed  CAS  Google Scholar 

  113. Traynelis S. F., Burgess M. F., Zheng F., Lyuboslavsky P., and Powers J. L. (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163–6175.

    PubMed  CAS  Google Scholar 

  114. Monyer H. et al. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  115. Kutsuwada T. et al. (1992) Molecular diversity of the NMDA receptor channel: Nature 358, 36–41.

    Article  PubMed  CAS  Google Scholar 

  116. Forrest D. et al. (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13, 325–338.

    Article  PubMed  CAS  Google Scholar 

  117. Yuzaki M. et al. (1996) Functional NMDA receptors are transiently active and support the survival of Purkinje cells in culture. J. Neurosci. 16, 4651–4661.

    PubMed  CAS  Google Scholar 

  118. Li Y., Erzurumlu R. S., Chen C., Jhaveri S., and Tonegawa S. (1994) Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76, 427–437.

    Article  PubMed  CAS  Google Scholar 

  119. Sakimura K. et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373, 151–155.

    Article  PubMed  CAS  Google Scholar 

  120. Stern P., Behe P., Schoepfer R., and Colquhoun D. (1992) Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B. Biol. Sci. 250, 271–277.

    Article  CAS  Google Scholar 

  121. Kornau H.-C., Seeburg P. H., and Kennedy M. B. (1991) in Ionotrophic Glutamate Receptors in the CNS (Jonas, P. and Monyer, H., eds.), Springer Verlag, Berlin, pp. 121–142.

    Google Scholar 

  122. Tokita Y. et al. (1996) Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells. Eur. J. Neurosci. 8, 69–78.

    Article  PubMed  CAS  Google Scholar 

  123. Wahlestedt C. et al. (1993) Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263.

    Article  PubMed  CAS  Google Scholar 

  124. Single F. N. et al. (2000) Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R). J. Neurosci. 20, 2558–2566.

    PubMed  CAS  Google Scholar 

  125. Mohn A. R., Gainetdinov R. R., Caron M. G., and Koller B. H. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436.

    Article  PubMed  CAS  Google Scholar 

  126. Laurie D. J. and Seeburg P. H. (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194.

    PubMed  CAS  Google Scholar 

  127. Della Vedova F., Bonecchi L., Bianchetti A., Fariello R. G., and Speciale C. (1994) Age-related changes in the relative abundance of NMDAR1 mRNA spliced variants in the rat brain. Neuroreport 5, 581–584.

    Article  PubMed  Google Scholar 

  128. Standaert D. G., Testa C. M., Young A. B., and Penney J. B. (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343, 1–16.

    Article  PubMed  CAS  Google Scholar 

  129. Laurie D. J., Putzke J., Zieglgansberger W., Seeburg P. H., and Tolle T. R. (1995) The distribution of splice variants of the NMDAR1 subunit mRNA in adult rat brain. Brain Res. Mol. Brain Res. 32, 94–108.

    Article  PubMed  CAS  Google Scholar 

  130. Standley S., Roche K. W., McCallum J., Sans N., and Wenthold R. J. (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898.

    Article  PubMed  CAS  Google Scholar 

  131. Okabe S., Miwa A., and Okado H. (1999) Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19, 7781–7792.

    PubMed  CAS  Google Scholar 

  132. Logan S. M., Rivera F. E., and Leonard J. P. (1999) Protein Kinase C modulation of recombinant NMDA receptor currents: roles for the C-terminal C1 exon and calcium ions. J. Neurosci. 19, 974–986.

    PubMed  CAS  Google Scholar 

  133. Ehlers M. D., Zhang S., Bernhadt J. P., and Huganir R. L. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NRI subunit. Cell 84, 745–755.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang S., Ehlers M. D., Bernhardt J. P., Su C. T., and Huganir R. L. (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453.

    Article  PubMed  CAS  Google Scholar 

  135. Kreutz M. R. et al. (1998) Axonal injury alters alternative splicing of the retinal NRI receptor: the preferential expression of the NR1b isoforms is crucial for retinal ganglion cell survival. J. Neurosci. 18, 8278–8291.

    PubMed  CAS  Google Scholar 

  136. Rameau G. A., Akaneya Y., Chiu L., and Ziff E. B. (2000) Role of NMDA receptor functional domains in excitatory cell death. Neuropharmacology 39, 2255–2266.

    Article  PubMed  CAS  Google Scholar 

  137. Wyszynski M. et al. (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442.

    Article  PubMed  CAS  Google Scholar 

  138. Matus A., Ackermann M., Pehling G., Byers H. R., and Fujiwara K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7590–7594.

    Article  PubMed  CAS  Google Scholar 

  139. Kaech S., Fisher M., Doll T., and Matus A. (1997) Isoform specificity in the relationship of actin to dendritic spines. J. Neurosci. 17, 9565–9572.

    PubMed  CAS  Google Scholar 

  140. Allison D. W., Gelfand V. I., Spector I., and Craig A. M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436.

    PubMed  CAS  Google Scholar 

  141. Krupp J. J., Vissel B., Thomas C. G., Heinemann S. F., and Westbrook G. L. (1999) Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178.

    PubMed  CAS  Google Scholar 

  142. O’Brien R. J., Lau L. F., and Huganir R. L. (1998) Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369.

    Article  PubMed  CAS  Google Scholar 

  143. Hipain S., Hipolito A., and Saffer L. (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844.

    Google Scholar 

  144. Jeffrey M., Goodsir C. M., Bruce M. E., McBride P. A., and Fraser J. R. (1997) In vivo ultrastructural and immunogold studies. Neuropathol. Appl. Neurobiol. 23, 93–101.

    Article  PubMed  CAS  Google Scholar 

  145. Jiang M., Lee C. L., Smith K. L., and Swann J. W. (1998) Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J. Neurosci. 18, 8356–8368.

    PubMed  CAS  Google Scholar 

  146. Garey L. J. et al. (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J. Neurol. Neurosurg. Psychiatry 65, 446–453.

    PubMed  CAS  Google Scholar 

  147. Rosenmund C., Feltz A., and Westbrook G. L. (1995) Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophysiol. 73, 427–430.

    PubMed  CAS  Google Scholar 

  148. Rao A. and Craig A. M. (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812.

    Article  PubMed  CAS  Google Scholar 

  149. Clark B. A., Farrant M., and Cull-Candy S. G. (1997) A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors. J. Neurosci. 17, 107–116.

    PubMed  CAS  Google Scholar 

  150. Sattler R., Xiong Z., Lu W. Y., MacDonald J. F., and Tymianski M. (2000) Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20, 22–33.

    PubMed  CAS  Google Scholar 

  151. Lin J. W. et al. (1998) Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J. Neurosci. 18, 2017–2027.

    PubMed  CAS  Google Scholar 

  152. Ehlers M. D., Fung E. T., O’Brien R. J., and Huganir R. L. (1998) Splice variant-specific interaction of the NMDA receptor subunit NRI with neuronal intermediate filaments. J. Neurosci. 18, 720–730.

    PubMed  CAS  Google Scholar 

  153. Ehlers M. D., Tingley W. G., and Huganir R. L. (1995) Regulated subcellular distribution of the NRI subunit of the NMDA receptor. Science 269, 1734–1737.

    Article  PubMed  CAS  Google Scholar 

  154. Barish M. E. and Mansdorf N. B. (1991) Development of intracellular calcium responses to depolarization and to kainate and N-methyl-D-aspartate in cultured mouse hippocampal neurons. Brain Res. Dev. Brain Res. 63, 53–61.

    Article  PubMed  CAS  Google Scholar 

  155. Marks J. D., Friedman J. E., and Haddad G. G. (1996) Vulnerability of CA1 neurons to glutamate is developmentally regulated. Brain Res. Dev. Brain Res. 97, 194–206.

    Article  PubMed  CAS  Google Scholar 

  156. Wahl P., Schousboe A., Honore T., and Drejer J. (1989) Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J. Neurochem. 53, 1316–1359.

    Article  PubMed  CAS  Google Scholar 

  157. Monyer H., Burnashev N., Laurie D. J., Sakmann B., and Seeburg P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540.

    Article  PubMed  CAS  Google Scholar 

  158. Sheng M., Cummings J., Roldan L. A., Jan Y. N., and Jan L. Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147.

    Article  PubMed  CAS  Google Scholar 

  159. Wenzel A., Fritschy J. M., Mohler H., and Benke D. (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit protiens. J. Neurochem. 68, 469–478.

    Article  PubMed  CAS  Google Scholar 

  160. Audinat E., Lambolez B., Rossier J., and Crepel F. (1994) Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur. J. Neurosci. 6, 1792–1800.

    Article  PubMed  CAS  Google Scholar 

  161. Hoffmann H., Hatt H., and Gottmann K. (1997) Presynaptic exocytosis regulates NR2A mRNA expression in cultured neocortical neurones. Neuroreport 8, 3731–3735.

    Article  PubMed  CAS  Google Scholar 

  162. Lindlbauer R., Mohrmann R., Hatt H., and Gottmann K. (1998) Regulation of kinetic and pharmacological properties of synaptic NMDA receptors depends on presynaptic exocytosis in rat hippocampal neurones. J. Physiol. 508, 495–502.

    Article  PubMed  CAS  Google Scholar 

  163. Bessho Y., Nawa H., and Nakanishi S. (1994) Selective up-regulation of an NMDA receptor subunit mRNA in cultured cerebellar granule cells by K(+)-induced depolarization and NMDA treatment. Neuron 12, 87–95.

    Article  PubMed  CAS  Google Scholar 

  164. Gallo V., Suergiu R., and Levi G. (1987) Functional evaluation of glutamate receptor subtypes in cultured cerebellar neurones and astrocytes. Eur. J. Pharmacol. 138, 293–297.

    Article  PubMed  CAS  Google Scholar 

  165. Balazs R., Jorgensen O. S., and Hack N. (1988) N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27, 437–451.

    Article  PubMed  CAS  Google Scholar 

  166. Mitani A., Watanabe M., and Kataoka K. (1998) Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus. J. Neurosci. 18, 7941–7952.

    PubMed  CAS  Google Scholar 

  167. Mizuta I., Katayama M., Watanabe M., Mishina M., and Ishii K. (1998) Developmental expression of NMDA receptor subunits and the emergence of glutamate neurotoxicity in primary cultures of murine cerebral cortical neurons. Cell. Mol. Life Sci. 54, 721–725.

    Article  PubMed  CAS  Google Scholar 

  168. Cheng C., Fass D. M., and Reynolds I. J. (1999) Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res. 849, 97–108.

    Article  PubMed  CAS  Google Scholar 

  169. Anegawa N. J., Lynch D. R., Verdoorn T. A., and Pritchett D. B. (1995) Transfection of N-methyl-D-aspartate receptors in a nonneuronal cell line leads to cell death. J. Neurochem. 64, 2004–2012.

    Article  PubMed  CAS  Google Scholar 

  170. Chazot P. L., Coleman S. K., Cik M., and Stephenson F. A. (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J. Biol. Chem. 269, 24,403–24,409.

    CAS  Google Scholar 

  171. Sprengel R. and Single F. N. (1999) Mice with genetically modified NMDA and AMPA receptors. Ann. NY Acad. Sci. 868, 494–501.

    Article  PubMed  CAS  Google Scholar 

  172. Morikawa E. et al. (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilon 1 (NR2A) subunit of NMDA receptor. J. Neurosci. 18, 9727–9732.

    PubMed  CAS  Google Scholar 

  173. Kiyama Y. et al. (1998) Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon 1 subunit. J. Neurosci. 18, 6704–6712.

    PubMed  CAS  Google Scholar 

  174. Kadotani H., Namura S., Katsuura G., Terashima T., and Kikuchi H. (1998) Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2C. Neuroreport 9, 471–475.

    Article  PubMed  CAS  Google Scholar 

  175. Sprengel R. et al. (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289.

    Article  PubMed  CAS  Google Scholar 

  176. Mori H. et al. (1998) Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron 21, 571–580.

    Article  PubMed  CAS  Google Scholar 

  177. Steigerwald F. et al. (2000) C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J. Neurosci. 20, 4573–4581.

    PubMed  CAS  Google Scholar 

  178. Klingauf J. and Neher E. (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys. J. 72, 674–690.

    Article  PubMed  CAS  Google Scholar 

  179. Lerea L. S. and McNamara J. O. (1993) Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron 10, 31–41.

    Article  PubMed  CAS  Google Scholar 

  180. Friedlander R. M. et al. (1997) Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J. Exp. Med. 185, 933–940.

    Article  PubMed  CAS  Google Scholar 

  181. Sheng M. (1997) Excitatory synapses. Glutamate receptors put in their place. Nature 386, 221–223.

    Article  PubMed  CAS  Google Scholar 

  182. Ponting C. P., Phillips C., Davies K. E., and Blake D. J. (1997) PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469–479.

    Article  PubMed  CAS  Google Scholar 

  183. Brenman J. E. and Bredt D. S. (1996) Nitric oxide signaling in the nervous system. Methods Enzymol. 269, 119–129.

    Article  PubMed  CAS  Google Scholar 

  184. Brenman J. E. et al. (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphal-syntrophin mediated by PDZ domains. Cell 84, 757–767.

    Article  PubMed  CAS  Google Scholar 

  185. Stricker N. L. et al. (1997) PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat. Biotechnol. 15, 336–342.

    Article  PubMed  CAS  Google Scholar 

  186. Garthwaite G. and Garthwaite J. (1988) Cyclic GMP and cell death in rat cerebellar slices. Neuroscience 26, 321–326.

    Article  PubMed  CAS  Google Scholar 

  187. Bredt D. S. and Snyder S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86, 9030–9033.

    Article  PubMed  CAS  Google Scholar 

  188. Migaud M. et al. (1998) Enhanced long-term potentiation and imparied learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439.

    Article  PubMed  CAS  Google Scholar 

  189. Yamada Y., Chochi Y., Takamiya K., Sobue K., and Inui M. (1999) Modulation of the channel activity of the epsilon2/zetal -subtype N-methyl-D-aspartate receptor by PSD-95. J. Biol. Chem. 274, 6647–6652.

    Article  PubMed  CAS  Google Scholar 

  190. Tsunoda S. et al. (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249.

    Article  PubMed  CAS  Google Scholar 

  191. Kim J. H., Liao D., Lau L. F., and Huganir R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691.

  192. Chen H. J., Rojas-Soto M., Oguni A., and Kennedy M. B. (1998) A synaptic RasGTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904.

    Article  PubMed  CAS  Google Scholar 

  193. Furuyashiki T. et al. (1999) Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J. Neurosci. 19, 109–118.

    PubMed  CAS  Google Scholar 

  194. Zhang W., Vazquez L., Apperson M., and Kennedy M. B. (1999) Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J. Neurosci. 19, 96–108.

    PubMed  CAS  Google Scholar 

  195. Tezuka T., Umemori H., Akiyama T., Nakanishi S., and Yamamoto T. (1995) PSD-95 promotes Fyn-mediated typrosine phsophorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96, 435–440.

    Article  Google Scholar 

  196. Martone M. E. et al. (1999) Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J. Neurosci. 19, 1988–1997.

    PubMed  CAS  Google Scholar 

  197. Takagi N., Logan R., Teves L., Wallace M. C., and Gurd J. W. (2000) Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J. Neurochem. 74, 169–178.

    Article  PubMed  CAS  Google Scholar 

  198. Cheung H. H. et al. (2000) Altered association of protein tyrosine kinases with postsynaptic densities after transient cerebral ischemia in the rat brain. J. Cereb. Blood Flow Metab. 20, 505–512.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Sattler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattler, R., Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24, 107–129 (2001). https://doi.org/10.1385/MN:24:1-3:107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:24:1-3:107

Index Entries

Navigation