Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ca2+–synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion

Abstract

In nerve terminals, exocytosis is mediated by SNARE proteins and regulated by Ca2+ and synaptotagmin-1 (syt). Ca2+ promotes the interaction of syt with anionic phospholipids and the target membrane SNAREs (t-SNAREs) SNAP-25 and syntaxin. Here, we have used a defined reconstituted fusion assay to determine directly whether syt–t-SNARE interactions couple Ca2+ to membrane fusion by comparing the effects of Ca2+–syt on neuronal (SNAP-25, syntaxin and synaptobrevin) and yeast (Sso1p, Sec9c and Snc2p) SNAREs. Ca2+–syt aggregated neuronal and yeast SNARE liposomes to similar extents via interactions with anionic phospholipids. However, Ca2+–syt was able to bind and stimulate fusion mediated by only neuronal SNAREs and had no effect on yeast SNAREs. Thus, Ca2+–syt regulates fusion through direct interactions with t-SNAREs and not solely through aggregation of vesicles. Ca2+–syt drove assembly of SNAP-25 onto membrane-embedded syntaxin, providing direct evidence that Ca2+–syt alters t-SNARE structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+–syt binds neuronal, but not yeast, t-SNAREs.
Figure 2: Ca2+–syt–t-SNARE interactions are crucial for Ca2+-stimulated membrane fusion.
Figure 3: Ca2+–syt mediates assembly of SNARE complexes.
Figure 4: Ca2+–syt enhances the rate of assembly of t-SNARE heterodimers in the absence of cd-syb.
Figure 5: SNARE complexes assembled by Ca2+–syt are resistant to cleavage by botulinum neurotoxin E.
Figure 6: Syt stimulates fusion of both the inner and outer membrane leaflets of SNARE-bearing vesicles.
Figure 7: Model depicting the role of Ca2+–syt in SNARE-catalyzed membrane fusion.

Similar content being viewed by others

References

  1. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y.A. & Scheller, R.H. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Jahn, R. & Sudhof, T.C. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68, 863–911 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    CAS  PubMed  Google Scholar 

  9. McNew, J.A., Weber, T., Engelman, D.M., Sollner, T.H. & Rothman, J.E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Fiebig, K.M., Rice, L.M., Pollock, E. & Brunger, A.T. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6, 117–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y.A., Scales, S.J. & Scheller, R.H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30, 161–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, F., Chen, Y., Su, Z. & Shin, Y.K. SNARE assembly and membrane fusion, a kinetic analysis. J. Biol. Chem. 279, 38668–38672 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. McNew, J.A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y.A., Scales, S.J., Patel, S.M., Doung, Y.C. & Scheller, R.H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Koh, T.W. & Bellen, H.J. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci. 26, 413–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3, 498–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Matthew, W.D., Tsavaler, L. & Reichardt, L.F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R. & Sudhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Chapman, E.R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735–5741 (1994).

    CAS  PubMed  Google Scholar 

  21. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Sollner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B. & Chapman, E.R. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 929–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270, 23667–23671 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Schiavo, G., Stenbeck, G., Rothman, J.E. & Sollner, T.H. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94, 997–1001 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brose, N., Petrenko, A.G., Sudhof, T.C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed-of-response of synaptotagmin and steers its membrane penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sorensen, J.B., Fernandez-Chacon, R., Sudhof, T.C. & Neher, E. Examining synaptotagmin 1 function in dense core vesicle exocytosis under direct control of Ca2+. J. Gen. Physiol. 122, 265–276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a non-additive manner. J. Biol. Chem. 278, 47030–47037 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Bhalla, A., Tucker, W.C. & Chapman, E.R. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol. Biol. Cell 16, 4755–4764 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA 99, 1665–1670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA 100, 2082–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Littleton, J.T. et al. synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, T., Tucker, W.C., Bhalla, A., Chapman, E.R. & Weisshaar, J.C. SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys. J. 89, 2458–2472 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quetglas, S. et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 21, 3970–3979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fasshauer, D., Antonin, W., Subramaniam, V. & Jahn, R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nat. Struct. Biol. 9, 144–151 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. McIntyre, J.C. & Sleight, R.G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30, 11819–11827 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Boon, J.M., Shukla, R., Smith, B.D., Licini, G. & Scrimin, P. Selective phosphatidylethanolamine translocation across vesicle membranes using synthetic translocases. Chem. Commun. (Camb.) 260–261 (2002).

  45. Matsuzaki, K., Yoneyama, S. & Miyajima, K. Pore formation and translocation of melittin. Biophys. J. 73, 831–838 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katz, B. The release of neural transmitter substances (Thomas, Springfield, Illinois, USA, 1969).

    Google Scholar 

  47. Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A. & Martin, T.F. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Shin, O.H., Maximov, A., Lim, B.K., Rizo, J. & Sudhof, T.C. Unexpected Ca2+-binding properties of synaptotagmin 9. Proc. Natl. Acad. Sci. USA 101, 2554–2559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin, O.H. et al. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron 37, 99–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, X., Zhang, F., McNew, J.A. & Shin, Y.K. Membrane fusion induced by neuronal SNAREs transits through hemifusion. J. Biol. Chem. 280, 30538–30541 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Giraudo, C.G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R. & Jackson, M.B. Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J. Physiol. (Lond.) 570, 295–307 (2006).

    Article  CAS  Google Scholar 

  55. Wang, C.T. et al. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, C.T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Desai, R.C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150, 1125–1136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chapman, E.R., An, S., Edwardson, J.M. & Jahn, R. A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. J. Biol. Chem. 271, 5844–5849 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Bark, I.C. & Wilson, M.C. Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139, 291–292 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of E.R.C.'s laboratory for discussions and comments. This study was supported by grants from the US National Institutes of Health (NIGMS GM 56827 and NIMH MH61876) and from the American Heart Association (0440168N) to E.R.C. A.B. and M.C.C. are supported by an American Heart Association predoctoral fellowship. W.C.T. was supported by a postdoctoral National Research Service Award from the US National Institutes of Health. E.R.C. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin R Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Syt aggregates vesicles in a Ca2+-dependent manner (PDF 1237 kb)

Supplementary Fig. 2

Rate of inner leaflet mixing is similar to rate of outer plus inner leaflet mixing (PDF 1081 kb)

Supplementary Methods (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, A., Chicka, M., Tucker, W. et al. Ca2+–synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat Struct Mol Biol 13, 323–330 (2006). https://doi.org/10.1038/nsmb1076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing