Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Myelination and the trophic support of long axons

Abstract

In addition to their role in providing myelin for rapid impulse propagation, the glia that ensheath long axons are required for the maintenance of normal axon transport and long-term survival. This presumably ancestral function seems to be independent of myelin membrane wrapping. Here, I propose that ensheathing glia provide trophic support to axons that are metabolically isolated, and that myelin itself might cause such isolation. This glial support of axonal integrity may be relevant for a number of neurological and psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Axonal degeneration following oligodendroglial defects and the loss of myelin.
Figure 2: Do myelinating glia maintain a system for the trophic support of axons?

Similar content being viewed by others

References

  1. Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    CAS  PubMed  Google Scholar 

  3. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genet. 33, 366–374 (2003).

    CAS  PubMed  Google Scholar 

  4. Kassmann, C. M. et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genet. 39, 969–976 (2007).

    CAS  PubMed  Google Scholar 

  5. Yin, X. et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J. Neurosci. 18, 1953–1962 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zalc, B. & Colman, D. R. Origins of vertebrate success. Science 288, 271–272 (2000).

    CAS  PubMed  Google Scholar 

  7. Hildebrand, C., Remahl, S., Persson, H. & Bjartmar, C. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384 (1993).

    CAS  PubMed  Google Scholar 

  8. Hildebrand, C., Bowe, C. M. & Remahl, I. N. Myelination and myelin sheath remodelling in normal and pathological PNS nerve fibres. Prog. Neurobiol. 43, 85–141 (1994).

    CAS  PubMed  Google Scholar 

  9. Perkins, G. A. et al. Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J. Struct. Biol. 161, 469–480 (2008).

    CAS  PubMed  Google Scholar 

  10. Rosenbluth, J. Multiple functions of the paranodal junction of myelinated nerve fibers. J. Neurosci. Res. 87, 3250–3258 (2009).

    CAS  PubMed  Google Scholar 

  11. Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56, 1532–1540 (2008).

    PubMed  Google Scholar 

  12. Fields, R. D. Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. Neuroscientist 14, 540–543 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).

    CAS  PubMed  Google Scholar 

  14. Trapp, B. D. & Nave, K. A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    CAS  PubMed  Google Scholar 

  15. Schiffmann, R. & van der Knaap, M. S. The latest on leukodystrophies. Curr. Opin. Neurol. 17, 187–192 (2004).

    CAS  PubMed  Google Scholar 

  16. Suter, U. & Scherer, S. S. Disease mechanisms in inherited neuropathies. Nature Rev. Neurosci. 4, 714–726 (2003).

    CAS  Google Scholar 

  17. Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferguson, B., Matyszak, M. K., Esiri, M. M. & Perry, V. H. Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399 (1997).

    PubMed  Google Scholar 

  19. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  20. Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125, 551–561 (2002).

    PubMed  Google Scholar 

  21. Nave, K. A., Sereda, M. W. & Ehrenreich, H. Mechanisms of disease: inherited demyelinating neuropathies — from basic to clinical research. Nature Clin. Pract. Neurol. 3, 453–464 (2007).

    CAS  Google Scholar 

  22. Scherer, S. S. & Wrabetz, L. Molecular mechanisms of inherited demyelinating neuropathies. Glia 56, 1578–1589 (2008).

    PubMed  PubMed Central  Google Scholar 

  23. Pareyson, D., Scaioli, V. & Laura, M. Clinical and electrophysiological aspects of Charcot-Marie-Tooth disease. Neuromolecular Med. 8, 3–22 (2006).

    CAS  PubMed  Google Scholar 

  24. Griffin, J. W. & Watson, D. F. Axonal transport in neurological disease. Ann. Neurol. 23, 3–13 (1988).

    CAS  PubMed  Google Scholar 

  25. Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518–527 (2006).

    CAS  PubMed  Google Scholar 

  26. Neumann, H., Medana, I. M., Bauer, J. & Lassmann, H. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25, 313–319 (2002).

    CAS  PubMed  Google Scholar 

  27. Smith, K. J. & Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 1, 232–241 (2002).

    CAS  PubMed  Google Scholar 

  28. Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8, 280–291 (2009).

    CAS  PubMed  Google Scholar 

  29. Waxman, S. G. Ions, energy and axonal injury: towards a molecular neurology of multiple sclerosis. Trends Mol. Med. 12, 192–195 (2006).

    CAS  PubMed  Google Scholar 

  30. Craner, M. J. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA 101, 8168–8173 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J. Neurosci. 12, 430–439 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stys, P. K. Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J. Cereb. Blood Flow Metab. 18, 2–25 (1998).

    CAS  PubMed  Google Scholar 

  33. Salter, M. G. & Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171 (2005).

    CAS  PubMed  Google Scholar 

  34. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    CAS  PubMed  Google Scholar 

  35. Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann. Neurol. 65, 151–159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann. Neurol. 65, 160–166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Newman, T. A. et al. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 124, 2203–2214 (2001).

    CAS  PubMed  Google Scholar 

  38. de Waegh, S. M., Lee, V. M. & Brady, S. T. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–463 (1992).

    CAS  PubMed  Google Scholar 

  39. Sanchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16, 5095–5105 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Inoue, Y., Nakamura, R., Mikoshiba, K. & Tsukada, Y. Fine structure of the central myelin sheath in the myelin deficient mutant Shiverer mouse, with special reference to the pattern of myelin formation by oligodendroglia. Brain Res. 219, 85–94 (1981).

    CAS  PubMed  Google Scholar 

  41. Shine, H. D., Readhead, C., Popko, B., Hood, L. & Sidman, R. L. Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J. Neurochem. 58, 342–349 (1992).

    CAS  PubMed  Google Scholar 

  42. Rosenbluth, J. Central myelin in the mouse mutant shiverer. J. Comp. Neurol. 194, 639–648 (1980).

    CAS  PubMed  Google Scholar 

  43. Andrews, H. et al. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J. Neurosci. Res. 83, 1533–1539 (2006).

    CAS  PubMed  Google Scholar 

  44. Brady, S. T. et al. Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci. 19, 7278–7288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nature Neurosci. 8, 468–475 (2005).

    CAS  PubMed  Google Scholar 

  46. Saher, G. et al. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J. Neurosci. 29, 6094–6104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).

    CAS  PubMed  Google Scholar 

  48. Edgar, J. M. et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J. Cell Biol. 166, 121–131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Edgar, J. M. et al. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 57, 1815–1824 (2009).

    PubMed  Google Scholar 

  50. Rosenbluth, J., Nave, K. A., Mierzwa, A. & Schiff, R. Subtle myelin defects in PLP-null mice. Glia 54, 172–182 (2006).

    PubMed  Google Scholar 

  51. Yin, X. et al. Evolution of a neuroprotective function of central nervous system myelin. J. Cell Biol. 172, 469–478 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231–242 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarrade, A. et al. A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum. Mol. Genet. 15, 3544–3558 (2006).

    CAS  PubMed  Google Scholar 

  54. Rasband, M. N. et al. CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50, 86–90 (2005).

    PubMed  Google Scholar 

  55. Garcia-Fresco, G. P. et al. Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc. Natl Acad. Sci. USA 103, 5137–5142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Higuchi, M. et al. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J. Neurosci. 25, 9434–9443 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yazawa, I. et al. Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45, 847–859 (2005).

    CAS  PubMed  Google Scholar 

  58. Zoller, I. et al. Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J. Neurosci. 28, 9741–9754 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Montag, D. et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13, 229–246 (1994).

    CAS  PubMed  Google Scholar 

  60. Li, C. et al. Myelination in the absence of myelin-associated glycoprotein. Nature 369, 747–750 (1994).

    CAS  PubMed  Google Scholar 

  61. Nguyen, T. et al. Axonal protective effects of the myelin-associated glycoprotein. J. Neurosci. 29, 630–637 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, L. & Griffin, J. W. Demyelinating neuropathies. Curr. Opin. Neurol. 16, 307–313 (2003).

    PubMed  Google Scholar 

  63. Marrosu, M. G. et al. Charcot-Marie-Tooth disease type 2 associated with mutation of the myelin protein zero gene. Neurology 50, 1397–1401 (1998).

    CAS  PubMed  Google Scholar 

  64. Laura, M. et al. Rapid progression of late onset axonal Charcot-Marie-Tooth disease associated with a novel MPZ mutation in the extracellular domain. J. Neurol. Neurosurg. Psychiatry 78, 1263–1266 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Sousa, A. D. & Bhat, M. A. Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons. Neuron Glia Biol. 3, 169–178 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Kirkpatrick, L. L., Witt, A. S., Payne, H. R., Shine, H. D. & Brady, S. T. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J. Neurosci. 21, 2288–2297 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Uschkureit, T., Sporkel, O., Stracke, J., Bussow, H. & Stoffel, W. Early onset of axonal degeneration in double (plp−/−mag−/−) and hypomyelinosis in triple (plp−/−mbp−/−mag−/−) mutant mice. J. Neurosci. 20, 5225–5233 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Du, Y. & Dreyfus, C. F. Oligodendrocytes as providers of growth factors. J. Neurosci. Res. 68, 647–654 (2002).

    CAS  PubMed  Google Scholar 

  69. Dai, X. et al. The trophic role of oligodendrocytes in the basal forebrain. J. Neurosci. 23, 5846–5853 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilkins, A., Majed, H., Layfield, R., Compston, A. & Chandran, S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J. Neurosci. 23, 4967–4974 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. McGrail, K. M., Phillips, J. M. & Sweadner, K. J. Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J. Neurosci. 11, 381–391 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Young, E. A. et al. Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions. Ann. Neurol. 63, 428–435 (2008).

    PubMed  Google Scholar 

  73. Tachikawa, M. et al. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron–glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20, 144–160 (2004).

    PubMed  Google Scholar 

  74. Brady, S. T. & Lasek, R. J. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell 23, 515–523 (1981).

    CAS  PubMed  Google Scholar 

  75. Oblinger, M. M., Foe, L. G., Kwiatkowska, D. & Kemp, R. G. Phosphofructokinase in the rat nervous system: regional differences in activity and characteristics of axonal transport. J. Neurosci. Res. 21, 25–34 (1988).

    CAS  PubMed  Google Scholar 

  76. Yuan, A., Mills, R. G., Bamburg, J. R. & Bray, J. J. Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons. Cell. Mol. Neurobiol. 19, 733–744 (1999).

    CAS  PubMed  Google Scholar 

  77. Galbraith, D. A. & Watts, D. C. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients. Comparison of normal humans and patients with Duchenne muscular dystrophy. Biochem. J. 191, 63–70 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kuehl, L. & Sumsion, E. N. Turnover of several glycolytic enzymes in rat liver. J. Biol. Chem. 245, 6616–6623 (1970).

    CAS  PubMed  Google Scholar 

  79. Medori, R., Autilio-Gambetti, L., Monaco, S. & Gambetti, P. Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc. Natl Acad. Sci. USA 82, 7716–7720 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Spencer, P. S., Sabri, M. I., Schaumburg, H. H. & Moore, C. L. Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Ann. Neurol. 5, 501–507 (1979).

    CAS  PubMed  Google Scholar 

  81. Morland, C., Henjum, S., Iversen, E. G., Skrede, K. K. & Hassel, B. Evidence for a higher glycolytic than oxidative metabolic activity in white matter of rat brain. Neurochem. Int. 50, 703–709 (2007).

    CAS  PubMed  Google Scholar 

  82. Brinster, R. L. Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim. Biophys. Acta 110, 439–441 (1965).

    CAS  PubMed  Google Scholar 

  83. Selak, I., Skaper, S. D. & Varon, S. Pyruvate participation in the low molecular weight trophic activity for central nervous system neurons in glia-conditioned media. J. Neurosci. 5, 23–28 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Suh, S. W., Aoyama, K., Matsumori, Y., Liu, J. & Swanson, R. A. Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54, 1452–1458 (2005).

    CAS  PubMed  Google Scholar 

  85. Hertz, L., Peng, L. & Dienel, G. A. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cereb. Blood Flow Metab. 27, 219–249 (2007).

    CAS  PubMed  Google Scholar 

  86. Dringen, R., Wiesinger, H. & Hamprecht, B. Uptake of L-lactate by cultured rat brain neurons. Neurosci. Lett. 163, 5–7 (1993).

    CAS  PubMed  Google Scholar 

  87. Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chih, C. P. & Roberts, E. L. Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J. Cereb. Blood Flow Metab. 23, 1263–1281 (2003).

    CAS  PubMed  Google Scholar 

  89. Allen, N. J., Karadottir, R. & Attwell, D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci. 25, 848–859 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Magistretti, P. J. Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209, 2304–2311 (2006).

    CAS  PubMed  Google Scholar 

  91. Wender, R. et al. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci. 20, 6804–6810 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown, A. M., Wender, R. & Ransom, B. R. Metabolic substrates other than glucose support axon function in central white matter. J. Neurosci. Res. 66, 839–843 (2001).

    CAS  PubMed  Google Scholar 

  93. Baltan, S. Surviving anoxia: a tale of two white matter tracts. Crit. Rev. Neurobiol. 18, 95–103 (2006).

    CAS  PubMed  Google Scholar 

  94. Butt, A. M., Colquhoun, K. & Berry, M. Confocal imaging of glial cells in the intact rat optic nerve. Glia 10, 315–322 (1994).

    CAS  PubMed  Google Scholar 

  95. Orthmann-Murphy, J. L., Freidin, M., Fischer, E., Scherer, S. S. & Abrams, C. K. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J. Neurosci. 27, 13949–13957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Robinson, S. R., Hampson, E. C., Munro, M. N. & Vaney, D. I. Unidirectional coupling of gap junctions between neuroglia. Science 262, 1072–1074 (1993).

    CAS  PubMed  Google Scholar 

  97. Rash, J. E. et al. Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J. Comp. Neurol. 388, 265–292 (1997).

    CAS  PubMed  Google Scholar 

  98. Uhlenberg, B. et al. Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am. J. Hum. Genet. 75, 251–260 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Orthmann-Murphy, J. L. et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132, 426–438 (2009).

    PubMed  Google Scholar 

  100. Odermatt, B. et al. Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J. Neurosci. 23, 4549–4559 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Menichella, D. M., Goodenough, D. A., Sirkowski, E., Scherer, S. S. & Paul, D. L. Connexins are critical for normal myelination in the central nervous system. J. Neurosci. 23, 5963–5973 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Menichella, D. M. et al. Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J. Neurosci. 26, 10984–10991 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lutz, S. E. et al. Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J. Neurosci. 29, 7743–7752 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Black, J. A., Foster, R. E. & Waxman, S. G. Rat optic nerve: freeze-fracture studies during development of myelinated axons. Brain Res. 250, 1–20 (1982).

    CAS  PubMed  Google Scholar 

  105. Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jalil, M. A. et al. Reduced N-acetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. J. Biol. Chem. 280, 31333–31339 (2005).

    CAS  PubMed  Google Scholar 

  107. Tekkok, S. B., Brown, A. M., Westenbroek, R., Pellerin, L. & Ransom, B. R. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J. Neurosci. Res. 81, 644–652 (2005).

    CAS  PubMed  Google Scholar 

  108. Einheber, S., Bhat, M. A. & Salzer, J. L. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. Neuron Glia Biol. 2, 165–174 (2006).

    PubMed  PubMed Central  Google Scholar 

  109. Roussarie, J. P., Ruffie, C. & Brahic, M. The role of myelin in Theiler's virus persistence in the central nervous system. PLoS Pathog. 3, e23 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. Ransom, B. R., Butt, A. M. & Black, J. A. Ultrastructural identification of HRP-injected oligodendrocytes in the intact rat optic nerve. Glia 4, 37–45 (1991).

    CAS  PubMed  Google Scholar 

  111. Mastro, A. M. & Keith, A. D. Diffusion in the aqueous compartment. J. Cell Biol. 99, 180s–187s (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Butt, A. M. & Ransom, B. R. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2, 470–475 (1989).

    CAS  PubMed  Google Scholar 

  113. Hochachka, P. W. Intracellular convection, homeostasis and metabolic regulation. J. Exp. Biol. 206, 2001–2009 (2003).

    CAS  PubMed  Google Scholar 

  114. Butt, A. M. & Jenkins, H. G. Morphological changes in oligodendrocytes in the intact mouse optic nerve following intravitreal injection of tumour necrosis factor. J. Neuroimmunol. 51, 27–33 (1994).

    CAS  PubMed  Google Scholar 

  115. Werner, H. B. et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 27, 7717–7730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating a-tubulin. J. Neurosci. 27, 2606–2616 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. & Gow, A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187–195 (2007).

    CAS  PubMed  Google Scholar 

  118. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    CAS  PubMed  Google Scholar 

  119. Bifulco, M., Laezza, C., Stingo, S. & Wolff, J. 2′,3′-Cyclic nucleotide 3′-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl Acad. Sci. USA 99, 1807–1812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, J., Gravel, M., Zhang, R., Thibault, P. & Braun, P. E. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J. Cell Biol. 170, 661–673 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Takenaka, T. et al. Fatty acids as an energy source for the operation of axoplasmic transport. Brain Res. 972, 38–43 (2003).

    CAS  PubMed  Google Scholar 

  122. Kassmann, C. M. & Nave, K. A. Oligodendroglial impact on axonal function and survival – a hypothesis. Curr. Opin. Neurol. 21, 235–241 (2008).

    PubMed  Google Scholar 

  123. Lasek, R. J., Gainer, H. & Przybylski, R. J. Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc. Natl Acad. Sci. USA 71, 1188–1192 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Gainer, H., Tasaki, I. & Lasek, R. J. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J. Cell Biol. 74, 524–530 (1977).

    CAS  PubMed  Google Scholar 

  125. Lasek, R. J., Gainer, H. & Barker, J. L. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia-neuron protein trnasfer hypothesis. J. Cell Biol. 74, 501–523 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Duncan, A., Ibrahim, M., Berry, M. & Butt, A. M. Transfer of horseradish peroxidase from oligodendrocyte to axon in the myelinating neonatal rat optic nerve: artefact or transcellular exchange? Glia 17, 349–355 (1996).

    CAS  PubMed  Google Scholar 

  127. Court, F. A., Hendriks, W. T., Macgillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hildebrand, C. & Waxman, S. G. Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J. Comp. Neurol. 224, 25–37 (1984).

    CAS  PubMed  Google Scholar 

  129. Edgar, J. M. et al. Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease. EMBO Mol. Med. 2, 42–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp. Neurol. 435, 241–248 (2001).

    CAS  PubMed  Google Scholar 

  131. McQuarrie, I. G., Brady, S. T. & Lasek, R. J. Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiol. Aging 10, 359–365 (1989).

    CAS  PubMed  Google Scholar 

  132. Verdu, E., Ceballos, D., Vilches, J. J. & Navarro, X. Influence of aging on peripheral nerve function and regeneration. J. Peripher. Nerv. Syst. 5, 191–208 (2000).

    CAS  PubMed  Google Scholar 

  133. Stokin, G. B. & Goldstein, L. S. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 75, 607–627 (2006).

    CAS  PubMed  Google Scholar 

  134. Szebenyi, G. et al. Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40, 41–52 (2003).

    CAS  PubMed  Google Scholar 

  135. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (1999).

    CAS  PubMed  Google Scholar 

  136. Xu, J. et al. Amyloid-b peptides are cytotoxic to oligodendrocytes. J. Neurosci. 21, RC118 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schweigreiter, R., Roots, B. I., Bandtlow, C. E. & Gould, R. M. Understanding myelination through studying its evolution. Int. Rev. Neurobiol. 73, 219–273 (2006).

    CAS  PubMed  Google Scholar 

  138. Chen, S. et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nature Neurosci. 6, 1186–1193 (2003).

    CAS  PubMed  Google Scholar 

  139. Salzer, J. L. Polarized domains of myelinated axons. Neuron 40, 297–318 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to many colleagues whose work could not be cited owing to space restrictions. I am thankful to D. Attwell, N. Brose, B. Hamprecht, J. Edgar, H. Ehrenreich, C. Kassmann, B. Ransom, J. Salzer, S. Scherer, M. Schnitzer, P. Stys, B. Trapp and H. Werner for helpful discussions and comments on the manuscript. I also thank W. Möbius for electron microscopy images. Work in the Nave laboratory is supported by grants from the BMBF (Leukonet), the DFG (CMPB, SFB/TR43) and the European Union FP6/FP7 (Neuropromise, NGIDD, Leukotreat).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

adrenoleukodystrophy

metachromatic leukodystrophy

multiple sclerosis

Pelizaeus–Merzbacher disease

Pelizaeus–Merzbacher-like disease

schizophrenia

FURTHER INFORMATION

Klaus-Armin Nave's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nave, KA. Myelination and the trophic support of long axons. Nat Rev Neurosci 11, 275–283 (2010). https://doi.org/10.1038/nrn2797

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing