Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A little more conversation, a little less action — candidate roles for the motor cortex in speech perception

Abstract

The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in the motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor cortex activation is essential in joint speech, particularly for the timing of turn taking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The anatomy of sound perception.
Figure 2: Responses to sound in the motor cortex.
Figure 3: Candidate roles for auditory streams of processing during conversation.

Similar content being viewed by others

References

  1. Kluender, K. R. & Alexander, J. M. in The Senses, a Comprehensive Reference vol. 3 (eds Basbaum, A. I. et al.) 829–860 (Adademic, San Diego, 2008).

    Book  Google Scholar 

  2. Liberman, A. M., Delattre, P. & Cooper, F. S. The role of selected stimulus-variables in the perception of the unvoiced stop consonants. Am. J. Psychol. 65, 497–516 (1952).

    Article  CAS  PubMed  Google Scholar 

  3. Liberman, A. M, Cooper, F. S., Shankweiler, D. P. & Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 74, 431–461 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Liberman, A. M. & Mattingly, I. G. The motor theory of speech-perception revised. Cognition 21, 1–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Fowler, C. A. An event approach to the study of speech-perception from a direct realist perspective. J. Phon. 14, 3–28 (1986).

    Article  Google Scholar 

  6. Galantucci, B., Fowler, C. A. & Turvey, M. T. The motor theory of speech perception reviewed. Psychon. Bull. Rev. 13, 361–377 (2005).

    Article  Google Scholar 

  7. Diehl, R. L. & Kluender, K. R. On the objects of speech perception. Ecol. Psychol. 1, 121–144 (1989).

    Article  Google Scholar 

  8. Lisker, L. Rapid vs rabid: a catalogue of acoustical features that may cue the distinction. Haskins Laboratories Status Report on Speech Research 54, 127–132 (1978).

    Google Scholar 

  9. Scott, S. K. & Johnsrude, I. S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26, 100–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nature Rev. Neurosci. 8, 393–402 (2007).

    Article  CAS  Google Scholar 

  11. Hickok, G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans. J. Cogn. Neurosci. 13 Jan 2009 (doi:10.1162/jocn.2009.2 1189).

  12. Lotto, A. J., Hickok, G. & Holt, L. L. Reflections on mirror neurons and speech perception. Trends Cogn. Sci. 17 Feb 2009 (doi: 10.1016/j.tics.2008.11.008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D. & Iacoboni, M. The essential role of premotor cortex in speech perception. Curr. Biol. 17, 1692–1696 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wise, R. J. S., Greene, J., Büchel, C. & Scott, S. K. Brain systems for word perception and articulation. Lancet 353, 1057–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Watkins, K. E., Strafella, A. P. & Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41, 989–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nature Neurosci. 7, 701–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, S. M. & Iacoboni, M. Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. Neuroimage 33, 316–325 (2006).

    Article  PubMed  Google Scholar 

  18. Fadiga, L., Craighero, L., Buccino, G. & Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur. J. Neurosci. 15, 399–402 (2002).

    Article  PubMed  Google Scholar 

  19. Tardif, E., Spierer, L., Clarke, S. & Murray, M. M. Interactions between auditory 'what' and 'where' pathways revealed by enhanced near-threshold discrimination of frequency and position. Neuropsychologia 46, 958–966 (2008).

    Article  PubMed  Google Scholar 

  20. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. S. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article  PubMed  Google Scholar 

  21. Wise, R. J. S., Scott, S. K., Blank, S. C., Mummery, C. J. & Warburton, E. Identifying separate neural sub-systems within 'Wernicke's area'. Brain 124, 83–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Romanski, L. M. et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neurosci. 2, 1131–1136 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Repp, B. H. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. J. Exp. Psychol. Hum. Percept. Perform. 27, 600–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Tourville, J. A., Reilly, K. J. & Guenther, F. H. Neural mechanisms underlying auditory feedback control of speech. Neuroimage 39, 1429–1443 (2008).

    Article  PubMed  Google Scholar 

  25. Scott, S. K., Rosen, S., Lang, H. & Wise, R. J. S. Neural correlates of intelligibility in speech investigated with noise-vocoded speech – a positron emission tomography study. J. Acoust. Soc. Am. 120, 1075–1083 (2006).

    Article  PubMed  Google Scholar 

  26. Mohr, J. P. et al. Broca aphasia – pathologic and clinical. Neurology 28, 311–324 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Blank, S. C., Bird, H., Turkheimer, F. & Wise, R. J. Speech production after stroke: the role of the right pars opercularis. Ann. Neurol. 54, 310–320 (2003).

    Google Scholar 

  28. Crinion, J. T. et al. Listening to narrative speech after aphasic stroke: the role of the left anterior temporal lobe. Cereb. Cortex 16, 1116–1125 (2006).

    Article  PubMed  Google Scholar 

  29. Bogen, J. E. & Bogen, G. M. Wernicke's region – where is it? Ann. NY Acad. Sci. 280, 834–843 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Basso, A., Casati, G. & Vignolo, L. A. Phonemic identification defect in aphasia. Cortex 13, 85–95 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Mogford, K. in Language Development in Exceptional Circumstances (eds Bishop, D. V. M. & Mogford, K.) 110–131 (Churchill Livingstone, New York, 1988).

    Google Scholar 

  32. Bishop, D. V. M. in Language Development in Exceptional Circumstances (eds Bishop, D. V. M. & Mogford, K.) 220–238 (Churchill Livingstone, New York, 1988).

    Google Scholar 

  33. Werker, J. F. & Yeung, H. H. Infant speech perception bootstraps word learning. Trends Cogn. Sci. 9, 519–527 (2005).

    Article  PubMed  Google Scholar 

  34. Tsao, F.-M., Liu, H. M. & Kuhl, P. K. Speech perception in infancy predicts language development in the second year of life: a longitudinal study. Child. Dev. 75, 1067–1084 (2004).

    Article  PubMed  Google Scholar 

  35. Bates, E. & Dick, F. Language, gesture, and the developing brain. Dev. Psychobiol. 40, 293–310 (2002).

    Article  PubMed  Google Scholar 

  36. Alcock, K. J. & Krawczyk, K. Motor skills and the vocabulary burst. (International Conference for the Study of Child Language, Berlin, 2005).

    Google Scholar 

  37. Wise, R. et al. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114, 1803–1817 (1991).

    Article  PubMed  Google Scholar 

  38. Mummery, C. J., Ashburner, J., Scott, S. K. & Wise, R. J. S. Functional neuroimaging of speech perception in six normal and two aphasic subjects. J. Acoust. Soc. Am. 106, 449–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Narain, C. et al. Defining a left-lateralized response specific to intelligible speech using fMRI. Cereb. Cortex 13, 1362–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T. & Medler, D. A. Neural substrates of phonemic perception. Cereb. Cortex 15, 1621–1631 (2005).

    Article  PubMed  Google Scholar 

  41. Uppenkamp, S., Johnsrude, I. S., Marslen-Wilson, W. & Patterson, R. D. Locating the initial stages of speech-sound processing in human temporal cortex. Neuroimage 31, 1284–1296 (2006).

    Article  PubMed  Google Scholar 

  42. Obleser, J., Scott, S. K. & Eulitz, C. Now you hear it, now you don't: transient traces of consonants and their nonspeech analogues in the human brain. Cereb. Cortex 16, 1069–1076 (2006).

    Article  PubMed  Google Scholar 

  43. Obleser, J. & Eisner, F. Pre-lexical abstraction of speech in the auditory cortex. Trends Cogn. Sci. 13, 14–19 (2009).

    Article  PubMed  Google Scholar 

  44. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Rev. Neurosci. 8, 976–987 (2007).

    Article  CAS  Google Scholar 

  45. Davis, M. H. & Johnsrude, I. S. Hierarchical processing in spoken language comprehension. J. Neurosci. 23, 3423–3431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis, M. H., Johnsrude, I. S., Hervais-Adelman, A. G. & Rogers, J. C. Motor regions contribute to speech perception: awareness, adaptation and categorization. J. Acoust. Soc. Am. 123, 3580 (2008).

    Article  Google Scholar 

  47. Jardri, R. et al. Self awareness and speech processing: an fMRI study. Neuroimage 35, 1645–1653 (2007).

    Article  PubMed  Google Scholar 

  48. Fogassi, L. & Ferrari, P. F. Mirror neurons and the evolution of embodied language. Curr. Dir. Psychol. Sci. 16, 136–141 (2007).

    Article  Google Scholar 

  49. Greenfield, P. M. Language, tools and brain: the ontology and phylogeny of hierarchically organized sequential behaviour. Behav. Brain Sci. 14, 531–595 (1991).

    Article  Google Scholar 

  50. Friederici, A. D. Broca's area and the ventral premotor cortex in language: functional differentiation and specificity. Cortex 42, 472–475 (2006).

    Article  PubMed  Google Scholar 

  51. Fiebach, C. J. & Schubotz, R. I. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca's area and ventral premotor cortex across domains? Cortex 42, 499–502 (2006).

    Article  PubMed  Google Scholar 

  52. Schubotz, R. I. & von Cramon, D. Y. Functional-anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20, S120–S131 (2003).

    Article  PubMed  Google Scholar 

  53. Fischer, M. H. & Zwaan, R. A. Embodied language: a review of the role of the motor system in language comprehension. Q. J. Exp. Psychol. 61, 825–850 (2008).

    Article  Google Scholar 

  54. Creem, S. H. & Proffitt, D. R. Grasping objects by their handles: a necessary interaction between cognition and action. J. Exp. Psychol. Hum. Percept. Perform. 27, 218–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pulvermüller, F. Brain mechanisms linking language and action. Nature Rev. Neurosci. 6, 576–582 (2005).

    Article  CAS  Google Scholar 

  56. Wise, R. J. et al. Noun imageability and the temporal lobes. Neuropsychologia 38, 985–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fiebach, C. J. & Friederici, A. D. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement. Neuropsychologia 42, 62–70 (2004).

    Article  PubMed  Google Scholar 

  58. Fridriksson, J. et al. Motor speech perception modulates the cortical language areas. Neuroimage, 41, 605–613 (2008).

    Article  PubMed  Google Scholar 

  59. Roy, A. C., Craighero, L., Fabbri-Destro, M. & Fadiga, L. Phonological and lexical motor facilitation during speech listening: a transcranial magnetic stimulation study. J. Physiol. Paris 102, 101–105 (2009).

    Article  Google Scholar 

  60. Levelt, W. J. M. Speaking: from Intention to Articulation (MIT press, Cambridge, Massachusetts, 1989).

    Google Scholar 

  61. Beebe, B., Alson, D., Jaffe, J., Feldstein, S. & Crown, C. Vocal congruence in mother-infant play. J. Psycholinguist. Res. 17, 245–259 (1988).

    Article  CAS  Google Scholar 

  62. Beattie, G. Talk: an Analysis of Speech and Non-Verbal Behaviour in Conversation (Open Univ. Press, Milton Keynes, 1983).

    Google Scholar 

  63. Condon, W. S. & Ogston, W. D. A segmentation of behaviour. J. Psychiatr. Res. 5, 221–235 (1967).

    Article  Google Scholar 

  64. Chartrand, T. L. & Bargh, J. A. The chameleon effect: the perception-behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893–910 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Garrod, S. & Pickering, M. J. Why is conversation so easy? Trends Cogn. Sci. 8, 8–11 (2004).

    Article  PubMed  Google Scholar 

  66. Pickering, M. J. & Garrod, S. Do people use language production to make predictions during comprehension? Trends Cogn. Sci. 11, 105–110 (2007).

    Article  PubMed  Google Scholar 

  67. McFarland, D. H. Respiratory markers of conversational interaction. J. Speech Lang. Hear. Res. 44, 128–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Pardo, J. S. On phonetic convergence during conversational interaction. J. Acoust. Soc. Am. 119, 2382–2393 (2006).

    Article  PubMed  Google Scholar 

  69. Pulvermüller, F. et al. Motor cortex maps articulatory features of speech sounds. Proc. Natl Acad. Sci. USA 103, 7865–7870 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Sacks, H., Schegloff, E. A. & Jefferson, G. A. A simplest systematics for the organization of turn-taking in conversation. Language 50, 697–735 (1974).

    Article  Google Scholar 

  71. De Ruiter, J. P, Mitterer, H. & Enfield, N. J. Projecting the end of a speaker's turn: a cognitive cornerstone of conversation. Language 82, 515–535 (2006).

    Article  Google Scholar 

  72. Beattie, G. W. & Barnard, P. J. The temporal structure of natural telephone conversations (Directory Inquiry calls). Linguistics 17, 213–229 (1979).

    Google Scholar 

  73. Wilson, M. & Wilson, T. P. An oscillator model of the timing of turn-taking. Psychon. Bull. Rev. 12, 957–968 (2005).

    Article  PubMed  Google Scholar 

  74. Nobuhiko, K. & Kenzo, I. Pure delay effects on speech quality in telecommunications. IEEE J. Sel. Areas Commun. 9, 586–593 (1991).

    Article  Google Scholar 

  75. Iacoboni, M. in Perspectives on Imitation: from Neuroscience to Social Science (eds Hurley, S. & Chater, N.) 77–100 (MIT Press, 2005).

    Google Scholar 

  76. Cummins, F. Practice and performance in speech produced synchronously. J. Phon. 31, 139–148 (2003).

    Article  Google Scholar 

  77. Cummins, F. Rhythm as entrainment: the case of synchronous speech. J. Phon. 6 Oct 2008 (doi: 10.1016/j.wocn.2008.08.003).

    Article  Google Scholar 

  78. Prinz, W. What re-enactment earns us. Cortex 42, 515–517 (2006).

    Article  PubMed  Google Scholar 

  79. Schienberg, S. & Holland, A. L. in Clinical Aphasiology: Conference Proceedings (ed. Brookshire, R. H.) 106–110 (BRK Publishers, Minneapolis, 1980).

    Google Scholar 

  80. Warren, J. E. et al. Positive emotions preferentially engage an auditory-motor “mirror” system. J. Neurosci. 26, 13067–13075 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scott, S. K. The point of P-centres. Psychol. Res. 61, 4–11 (1998).

    Article  Google Scholar 

  82. Warren, W. H. Jr. & Verbrugge, R. R. Auditory perception of breaking and bouncing events: a case study in ecological acoustics. J. Exp. Psychol. Hum. Percept. Perform. 10, 704–712 (1984).

    Article  PubMed  Google Scholar 

  83. Hove, M. J., Keller, P. E. & Krumhansl, C. L. Sensorimotor synchronization with chords containing tone-onset asynchronies. Percept. Psychophys. 69, 699–708 (2007).

    Article  PubMed  Google Scholar 

  84. Gordon, J. W. The perceptual attack time of musical tones. J. Acoust. Soc. Am. 82, 88–105 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Rasch, R. Synchronization in performed ensemble music. Acustica 43, 121–131 (1979).

    Google Scholar 

  86. Marcus, S. M. Acoustic determinants of perceptual centre (P-center) location. Percept. Psychophys. 30, 247–256 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Kohler, E. et al. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297, 846–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Gazzola, V., Aziz-Zadeh, L. & Keysers, C. Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 16, 1824–1829 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27, 308–314 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meyer, M., Zysset, S., von Cramon, D. Y. & Alter, K. Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Brain Res. Cogn. Brain Res. 24, 291–306 (2005).

    Article  PubMed  Google Scholar 

  91. Provine, R. R. Contagious laughter - laughter is a sufficient stimulus for laughs and smiles. Bull. Psychon. Soc. 30, 1–4 (1992).

    Article  Google Scholar 

  92. Wiltermuth, S. S. & Heath, C. Synchrony and cooperation. Psychol. Sci. 20, 1–5 (2008).

    Article  Google Scholar 

  93. Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Binder, J. R., Swanson, S. J., Hammeke, T. A. & Sabsevitz, D. S. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia 49, 1980–1997 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wilson, S. M., Molnar-Szakacs, I. & Iacoboni, M. Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cereb. Cortex 18, 230–242 (2008).

    Article  PubMed  Google Scholar 

  96. Scott, S. K., Rosen, S., Wickham, L. & Wise, R. J. S. A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. J. Acoust. Soc. Am. 115, 813–821 (2004).

    Article  PubMed  Google Scholar 

  97. Callan, D. E. et al. Song and speech: brain regions involved with perception and covert production. Neuroimage 31, 1327–1342 (2006).

    Article  PubMed  Google Scholar 

  98. Doehrmann, O., Naumer, M. J., Volz, S., Kaiser, J. & Altmann, C. F. Probing category selectivity for environmental sounds in the human auditory brain. Neuropsychologia 46, 2776–2786 (2008).

    Article  PubMed  Google Scholar 

  99. Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J. & DeYoe, E. A. Distinct cortical pathways for processing tool versus animal sounds. J. Neurosci. 25, 5148–5158 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    Article  PubMed  Google Scholar 

  101. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I: Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.K.S., C.M. and F.E. are funded by Wellcome Trust Grant WT074414MA. We would like to thank K. Kluender, H. Mitterer, L. Bernstein, T. Manly and M. Davis for very helpful discussions on many of these issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie K. Scott.

Related links

Related links

FURTHER INFORMATION

Sophie Scott's homepage

SPM Surfrend Toolbox

Glossary

Convergence

In this context, the way that different aspects of joint speech (both motoric and linguistic) become united, or coordinated, between speakers.

Diphone

A cluster of two phones that can be legally combined in a language (for example, /sk/ is legal at the start of a syllable in English, but /ks/ is not); diphones thus contain transitional information between the two phones, and are more information-rich than single phones.

Embodied semantic representations

In this context, theories of semantic representations that link the more abstract elements of the representations to more concrete elements of their material properties; for example, part of the meaning of 'a football' is represented by how one might kick it.

Expressive aphasia

A speech-production deficit in which people have reduced fluency, grammatical errors and problems in articulating accurately.

Linguistics

In this context, the phonemic, semantic or syntactic processing of heard speech, which is distinct from the processing of the basic acoustic properties of speech (for example, loudness).

Local structure computation

The sequential analysis of heard speech (for example, 'the sandwich was eaten'), as opposed to higher-order, hierarchical computations across longer timescales (for example, 'the sandwiches were eaten by the children at the party').

Phone

A single speech sound (which is always a variant of a phoneme); for example, the aspirated /p/ at the start of 'port' is a different phone from the /p/ of 'sport', but these are both examples (allophones) of the phoneme /p/.

Phoneme

An elemental sound of speech (such as /p/ or /t/) that can be used in the explicit transcription and classification of the sounds of a language.

Phonemic

Pertaining to the representation and processing of phonemes.

Phonetic

Pertaining to speech sounds (phones).

Pre-lexical processing

In this context, the neural processing of speech sounds before the representation of word identity and meaning.

Receptive aphasia

A speech-perception and -comprehension deficit in which the patient has great difficulty in following what is being said to them. Speech production is unimpaired in terms of fluency but speech content can be meaningless, and many patients are unaware that they have a problem.

Semantic

Relating to the meaning of things, in this case words and language.

Spectral centre of gravity

The average value of the spectral components of a sound, which captures how the sound is weighted across low to high frequencies; for example, 's' has a higher spectral centre of gravity than 'sh'.

Speech comprehension

In this context, post-perceptual, lexical, semantic and linguistic processing of speech. Although speech comprehension does require good speech perception, comprehension can also be enhanced by higher-order syntactic and semantic features (for example, sentence predictability).

Speech perception

In this context, the pre-lexical perceptual processing of the speech signal.

Syllable

Like a diphone, a syllable typically contains information about the organization of speech at a level higher than the phoneme. A single-syllable word, like 'start', can be broken down into an onset and a rhyme (for example, st-art), and may consist of only the rhyme (for example, 'art'): the rhyme may be further broken down into a nucleus and coda (for example, ar-t).

Syntax

The rules that determine the correct arrangement and inflection of words in spoken or written language.

Voicing

The sound made by vibrations of the vocal folds; for example, the sound at the start of 'zoo' is voiced, whereas that at the start of 'sue' is unvoiced.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, S., McGettigan, C. & Eisner, F. A little more conversation, a little less action — candidate roles for the motor cortex in speech perception. Nat Rev Neurosci 10, 295–302 (2009). https://doi.org/10.1038/nrn2603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing