Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-cycle control and cortical development

A Corrigendum to this article was published on 01 July 2007

Key Points

  • Primate corticogenesis is characterized by a number of unique features including the existence of a unique germinal zone, the outer subventricular zone, which is largely responsible for the generation of upper layer neurons.

  • Multiple proliferative programmes exist in the germinal zone of the cortex that are responsible for the generation of cytoarchitecturally distinct cortical areas.

  • Cell-cycle regulation and in particular the G1-phase control, has a major role in determining neuron number in the cerebral cortex.

  • The developmental mechanisms that establish the precise number of neurons in individual areas and layers are dependent on the integration of intrinsic and extrinsic factors.

  • Embryonic thalamocortical projections are likely to influence areal specification during early stages of corticogenesis by modulating proliferation.

Abstract

The spatio-temporal timing of the last round of mitosis, followed by the migration of neuroblasts to the cortical plate leads to the formation of the six-layered cortex that is subdivided into functionally defined cortical areas. Whereas many of the cellular and molecular mechanisms have been established in rodents, there are a number of unique features that require further elucidation in primates. Recent findings both in rodents and in primates indicate that regulation of the cell cycle, specifically of the G1 phase has a crucial role in controlling area-specific rates of neuron production and the generation of cytoarchitectonic maps.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differences in the anatomical organization of the rodent and primate embryonic cortex.
Figure 2: The proliferative behaviour and progeny of cortical progenitors.
Figure 3: Mechanisms of arealization in the cortex.
Figure 4: The link between G1 phase and the mode of division of cortical precursors.
Figure 5: Schematic diagram of different extrinsic influences affecting precursor proliferation dynamics and cell fate.

Similar content being viewed by others

References

  1. Marin, O. & Rubenstein, J. L. A long, remarkable journey: tangential migration in the telencephalon. Nature Rev. Neurosci. 2, 780–790 (2001).

    CAS  Google Scholar 

  2. Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405 (1935).

    Google Scholar 

  3. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    CAS  PubMed  Google Scholar 

  4. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000). A landmark study revealing the neurogenic potential of RGCs.

    CAS  PubMed  Google Scholar 

  5. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    CAS  PubMed  Google Scholar 

  6. Heins, N. et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nature Neurosci. 5, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  7. Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045–1056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004). An impressive time-lapse videomicroscopy study revealing the behaviour of cortical progenitor cells and showing the relationship between the VZ and the SVZ.

    CAS  PubMed  Google Scholar 

  10. Howard, B., Chen, Y. & Zecevic, N. Cortical progenitor cells in the developing human telencephalon. Glia 53, 57–66 (2006).

    PubMed  Google Scholar 

  11. Frantz, G. D., Weimann, J. M., Levin, M. E. & McConnell, S. K. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J. Neurosci. 14, 5725–5740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    CAS  PubMed  Google Scholar 

  15. Britanova, O., Akopov, S., Lukyanov, S., Gruss, P. & Tarabykin, V. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Eur. J. Neurosci. 21, 658–668 (2005).

    PubMed  Google Scholar 

  16. Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).

    PubMed  Google Scholar 

  17. Wu, S. X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl Acad. Sci. USA 102, 17172–17177 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    CAS  PubMed  Google Scholar 

  19. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    CAS  PubMed  Google Scholar 

  20. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005). Shows that the OSVZ generates upper layer neurons in the primate and provides evidence that the G1-phase regulation of the cell cycle of cortical precursors determines cytoarchitectonic features.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guillemot, F., Molnar, Z., Tarabykin, V. & Stoykova, A. Molecular mechanisms of cortical differentiation. Eur. J. Neurosci. 23, 857–868 (2006).

    PubMed  Google Scholar 

  22. Roy, K. et al. The Tlx gene regulates the timing of neurogenesis in the cortex. J. Neurosci. 24, 8333–8345 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuurmans, C. et al. Sequential phases of cortical specification involve Neurogenin-dependent and independent pathways. EMBO J. 23, 2892–2902 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marin-Padilla, M. Dual origin of the mammalian neocortex and evolution of the subplate. Anat. Embryol. 152, 109–126 (1978).

    CAS  Google Scholar 

  25. Caviness, V. S. Neocortical histogenesis in the normal and reeler mice: a developmental study based upon [3H]-thymidine autoradiography. Dev. Brain Res. 4, 293–302 (1982).

    Google Scholar 

  26. Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

    CAS  PubMed  Google Scholar 

  27. Angevine, J. B. & Sidman, R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    PubMed  Google Scholar 

  28. Smart, I. H. M. & Smart, M. The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with (3H)thymidine on the eleventh and twelfth day post-conception. J. Anat. 123, 515–525 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rakic, P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974).

    CAS  PubMed  Google Scholar 

  30. Smart, I. H. M. & McSherry, G. M. Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat. 134, 415–442 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dehay, C., Giroud, P., Berland, M., Smart, I. & Kennedy, H. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366, 464–466 (1993).

    CAS  PubMed  Google Scholar 

  32. Sur, M. & Rubenstein, J. L. Patterning and plasticity of the cerebral cortex. Science 310, 805–810 (2005). A powerful synthesis of how intrinsic and extrinsic mechanisms determine arealization in the cerebral cortex.

    CAS  PubMed  Google Scholar 

  33. Rash, B. G. & Grove, E. A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16, 25–34 (2006). A comprehensive review of the mechanisms contributing to laminar and areal patterning in the cerebral cortex from mice to primates.

    CAS  PubMed  Google Scholar 

  34. Smart, I. H. M., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and posmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002). Compares the embryonic compartments of rodents and monkeys and highlights numerous primate-specific features including the OSVZ.

    PubMed  Google Scholar 

  35. Meyer, G., Schaaps, J. P., Moreau, L. & Goffinet, A. M. Embryonic and early fetal development of the human neocortex. J. Neurosci. 20, 1858–1868 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bystron, I., Rakic, P., Molnar, Z. & Blakemore, C. The first neurons of the human cerebral cortex. Nature Neurosci. 9, 880–886 (2006).

    CAS  PubMed  Google Scholar 

  37. Kostovic, I. & Rakic, P. Develomental history of the transient subplate zone in the visual cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990).

    CAS  PubMed  Google Scholar 

  38. Letinic, K., Zoncu, R. & Rakic, P. Origin of GABAergic neurons in the human neocortex. Nature 417, 645–649 (2002). Shows that in primates a high percentage of cortical interneurons are generated in the germinal zones of the dorsal telencephalon.

    CAS  PubMed  Google Scholar 

  39. Zecevic, N., Chen, Y. & Filipovic, R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J. Comp. Neurol. 491, 109–122 (2005).

    PubMed  PubMed Central  Google Scholar 

  40. Molnar, Z. et al. Comparative aspects of cerebral cortical development. Eur. J. Neurosci. 23, 921–934 (2006).

    PubMed  PubMed Central  Google Scholar 

  41. Rockel, A. J., Hiorns, R. W. & Powell, T. P. S. The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980).

    CAS  PubMed  Google Scholar 

  42. Reznikov, K., Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages. Dev. Dyn. 210, 328–343 (1997).

    CAS  PubMed  Google Scholar 

  43. Cunningham, J. J. & Roussel, M. F. Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ. 12, 387–396 (2001).

    CAS  PubMed  Google Scholar 

  44. Chenn, A. The simple life (of cortical progenitors). Neuron 45, 817–819 (2005).

    CAS  PubMed  Google Scholar 

  45. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nature Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Google Scholar 

  47. Hammerle, B. et al. Mnb/Dyrk1A is transiently expressed and asymmetrically segregated in neural progenitor cells at the transition to neurogenic divisions. Dev. Biol. 246, 259–273 (2002).

    CAS  PubMed  Google Scholar 

  48. Iacopetti, P. et al. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl Acad. Sci. USA 96, 4639–4644 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Malatesta, P. et al. PC3 overexpression affects the pattern of cell division of rat cortical precursors. Mech. Dev. 90, 17–28 (2000).

    CAS  PubMed  Google Scholar 

  50. Koutmani, Y. et al. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. Eur. J. Neurosci. 20, 2509–2523 (2004).

    PubMed  Google Scholar 

  51. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    CAS  PubMed  Google Scholar 

  52. Polleux, F., Dehay, C. & Kennedy, H. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J. Comp. Neurol. 385, 95–116 (1997).

    CAS  PubMed  Google Scholar 

  53. Polleux, F., Dehay, C., Moraillon, B. & Kennedy, H. Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J. Neurosci. 17, 7763–7783 (1997). Provides evidence for area-specific regulation of cell-cycle kinetics in the germinal zones of the rodent cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oppenheim, R. W., Cole, T. & Prevette, D. Early regional variations in motoneuron numbers arise by differential proliferation in the chick embryo spinal cord. Dev. Biol. 133, 468–474 (1989).

    CAS  PubMed  Google Scholar 

  55. Caviness, V. S. Jr et al. Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb. Cortex 13, 592–598 (2003).

    PubMed  Google Scholar 

  56. Caviness, V. S., Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    CAS  PubMed  Google Scholar 

  57. Tirone, F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell Physiol. 187, 155–165 (2001).

    CAS  PubMed  Google Scholar 

  58. Georgopoulou, N. et al. BM88 is a dual function molecule inducing cell cycle exit and neuronal differentiation of neuroblastoma cells via cyclin D1 down-regulation and pRB hypo-phosphorylation. J. Biol. Chem. 281, 33606–33620 (2006).

    CAS  PubMed  Google Scholar 

  59. Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H. & Dehay, C. Contrasting effects of bFGF and NT3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci. 22, 6610–6622 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003). Demonstrates that cell-cycle duration of cortical precursors is heterogeneous and provides in vivo evidence for differentiative divisions having longer cell-cycle duration than proliferative divisions.

    CAS  PubMed  Google Scholar 

  61. Hodge, R. D., D'Ercole, A. J. & O'Kusky, J. R. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle re-entry in the embryonic cerebral cortex. J. Neurosci. 24, 10201–10210 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vernon, A. E., Devine, C. & Philpott, A. The cdk inhibitor p27Xic1 is required for differentiation of primary neurons in Xenopus. Development 130, 85–92 (2003).

    CAS  PubMed  Google Scholar 

  64. Nguyen, L. et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev. 20, 1511–1524 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Savatier, P., Lapillonne, H., van Grunsven, L. A., Rudkin, B. B. & Samarut, J. Withdrawal of differentiation inhibitory activity/leukaemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12, 309–322 (1996).

    CAS  PubMed  Google Scholar 

  66. Fluckiger, A. C. et al. Cell cycle features of primate embryonic stem cells. Stem Cells 24, 547–556 (2006).

    CAS  PubMed  Google Scholar 

  67. Mummery, C. L., van den Brink, C. E. & de Laat, S. W. Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent. Dev. Biol. 121, 10–19 (1987).

    CAS  PubMed  Google Scholar 

  68. Baek, S. H. et al. Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc. Natl Acad. Sci. USA 100, 3245–3250 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kioussi, C. et al. Identification of a Wnt/Dvl/β-Catenin--> Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685 (2002).

    CAS  PubMed  Google Scholar 

  70. Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA 100, 7331–7336 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 12, 432–438 (2002).

    CAS  PubMed  Google Scholar 

  72. Caviness, V. S. & Sidman, R. L. Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mice: an autoradiographic analysis. J. Comp. Neurol. 148, 141–152 (1973).

    PubMed  Google Scholar 

  73. Krushel, L. A., Johnston, J. G., Fishell, G., Tibshirani, R. & van der Kooy, D. Spatially localized neuronal cell lineages in the developing mammalian forebrain. Neuroscience 53, 1035–1047 (1993).

    CAS  PubMed  Google Scholar 

  74. Jensen, K. F. & Killackey, H. P. Subcortical projections from ectopic neocortical neurons. Proc. Natl Acad. Sci. USA 81, 964–968 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Polleux, F., Dehay, C., Goffinet, A. & Kennedy, H. Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb. Cortex 11, 1027–1039 (2001).

    CAS  PubMed  Google Scholar 

  76. Polleux, F., Dehay, C. & Kennedy, H. Neurogenesis and commitment of corticospinal neurons in Reeler. J. Neurosci. 18, 9910–9923 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. McConnell, S. K. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci. 8, 945–974 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    CAS  PubMed  Google Scholar 

  79. Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper layer fate. Neuron 17, 55–61 (1996).

    CAS  PubMed  Google Scholar 

  80. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006). An important study that overturns traditional ideas on corticogenesis by showing the key role of cell-intrinsic mechanisms in determining the fate of cortical precursors.

    CAS  PubMed  Google Scholar 

  81. Fishell, G. Striatal precursors adopt cortical identities in response to local cues. Development 121, 803–812 (1995).

    CAS  PubMed  Google Scholar 

  82. Qian, X., Davis, A. A., Goderie, S. K. & Temple, S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93 (1997).

    CAS  PubMed  Google Scholar 

  83. Cremisi, F., Philpott, A. & Ohnuma, S. Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol. 13, 26–33 (2003).

    CAS  PubMed  Google Scholar 

  84. Ohnuma, S., Philpott, A. & Harris, W. A. Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol. 11, 66–73 (2001).

    CAS  PubMed  Google Scholar 

  85. Mizutani, K. & Saito, T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132, 1295–1304 (2005).

    CAS  PubMed  Google Scholar 

  86. Lien, W. H., Klezovitch, O., Fernandez, T. E., Delrow, J. & Vasioukhin, V. αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, G. J., Shatz, C. J. & McConnell, S. K. Morphology of pioneer and follower growth cones in the developing cerebral cortex. J. Neurobiol. 22, 629–642 (1991).

    CAS  PubMed  Google Scholar 

  88. Miller, B., Chou, L. & Finlay, B. L. The early development of thalamocortical and corticothalamic projections. J. Comp. Neurol. 335, 16–41 (1993).

    CAS  PubMed  Google Scholar 

  89. McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate pioneers and the formation of descending connections from cerebral cortex. J. Neurosci. 14, 1892–1907 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Reh, T. A. Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci. 7, 3317–3324 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Smeyne, R. J. et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell Neurosci. 6, 230–251 (1995).

    CAS  PubMed  Google Scholar 

  92. Viti, J., Gulacsi, A. & Lillien, L. Wnt regulation of progenitor maturation in the cortex depends on SHh or fibroblast growth factor 2. J. Neurosci. 23, 5919–5927 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lillien, L. & Raphael, H. BMP and FGF regulate the development of EGF-responsive neural progenitor cells. Development 127, 4993–5005 (2000).

    CAS  PubMed  Google Scholar 

  94. Rubenstein, J. L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    CAS  PubMed  Google Scholar 

  95. Dicicco-Bloom, E., Lu, N., Pintar, J. E. & Zhang, J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann. NY Acad. Sci. 865, 274–289 (1998).

    CAS  PubMed  Google Scholar 

  96. Haydar, T. F., Wang, F., Schwartz, M. L. & Rakic, P. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci. 20, 5764–5774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schultze, B. & Korr, H. Cell kinetic studies of different cell types in the developing and adut brain of the rat and the mouse: a review. Cell Tissue Kinet. 14, 309–325 (1981).

    CAS  PubMed  Google Scholar 

  98. Smart, I. H. M. & Smart, M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J. Anat. 134, 273–298 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Waechter, R. V. & Jaensch, B. Generation time of the matrix cells during embryonic brain development: an autoradiographic study in rats. Brain Res. 46, 235–250 (1972).

    Google Scholar 

  100. Bruckner, G., Mares, V. & Biesold, D. Neurogenesis in the visual system of the rat. An autoradiographic investigation. J. Comp. Neurol. 166, 245–255 (1976).

    CAS  PubMed  Google Scholar 

  101. Schultze, B., Nowak, B. & Maurer, W. Cycle times of the neural epithelial cells of various types of neuron in the rat. An autoradiographic study. J. Comp. Neurol. 158, 207–218 (1974).

    CAS  PubMed  Google Scholar 

  102. Kaufmann, S. L. Lengthening of the generation cycle during embryonic differentiation of the mouse neural tube. Exp. Cell Res. 49, 420–424 (1968).

    Google Scholar 

  103. Hoshino, K., Matsuzawa, T. & Murakami, U. Characteristics of the cell cycle of matrix cells in the mouse embryo during histogenesis of telencephalon. Exp. Cell Res. 77, 89–94 (1973).

    CAS  PubMed  Google Scholar 

  104. Schmahl, W. Developmental gradient of cell cycle in the telencephalic roof of the fetal NMRI-mouse. Anat. Embryol. 167, 355–364 (1983).

    CAS  Google Scholar 

  105. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Cai, L., Hayes, N. L. & Nowakowski, R. S. Local homogeneity of cell cycle length in developing mouse cortex. J. Neurosci. 17, 2079–2087 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Reznikov, K. & Van Der Kooy, D. Variability and partial synchrony of the cell cycle in the germinal zone of the early embryonic cerebral cortex. J. Comp. Neurol. 360, 536–554 (1995).

    CAS  PubMed  Google Scholar 

  108. Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the germinal zone of the developing rat telencephalon. Development 118, 175–192 (1993).

    CAS  PubMed  Google Scholar 

  109. Kornack, D. R. & Rakic, P. Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc. Natl Acad. Sci. USA 95, 1242–1246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    CAS  PubMed  Google Scholar 

  111. Dehay, C., Savatier, P., Cortay, V. & Kennedy, H. Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J. Neurosci. 21, 201–214 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Skoglund, T. S., Pasher, R. & Berthold, C. H. Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neurosci. Lett. 208, 97–100 (1996).

    CAS  PubMed  Google Scholar 

  113. Beaulieu, C. & Colonnier, M. Number of neurons in individual laminae of areas 3B, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J. Comp. Neurol. 279, 228–234 (1989).

    CAS  PubMed  Google Scholar 

  114. Eagleson, K. L., Lillien, L., Chan, A. V. & Levitt, P. Mechanisms specifying area fate in cortex include cell-cycle-dependent decisions and the capacity of progenitors to express phenotype memory. Development 124, 1623–1630 (1997).

    CAS  PubMed  Google Scholar 

  115. Kennedy, H. & Dehay, C. Cortical specification of mice and men. Cereb. Cortex 3, 27–35 (1993).

    Google Scholar 

  116. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988). An influential review, which needs to be read in detail, lays the foundation of the protomap hypothesis.

    CAS  PubMed  Google Scholar 

  117. Grove, E. A. & Fukuchi-Shimogori, T. Generating the cerebral cortical area map. Annu. Rev. Neurosci. 26, 355–380 (2003).

    CAS  PubMed  Google Scholar 

  118. O'Leary, D. D. M. Do cortical areas emerge from a protocortex? Trends Neurosci. 12, 400–406 (1989). This review laid out the protocortex hypothesis; although influential, it needs to be revisted.

    CAS  PubMed  Google Scholar 

  119. Macagno, E. R. Cellular interactions and pattern formation in the development of the visual system of Daphnia magna (Crustacea, Branchiopoda). I. Interactions between embryonic retinular fibres and laminar neurons. Dev. Biol. 73, 206–238 (1979).

    CAS  PubMed  Google Scholar 

  120. Selleck, S. B., Gonzalez, C., Glover, D. M. & White, K. Regulation of the G1–S transition in postembryonic neuronal precursors by axon ingrowth. Nature 355, 253–255 (1992).

    CAS  PubMed  Google Scholar 

  121. Kollros, J. J. Peripheral control of midbrain mitotic activity in the frog. J. Comp. Neurol. 205, 171–178 (1982).

    CAS  PubMed  Google Scholar 

  122. Carney, R.S.E. et al. in Soc. Neurosci. Program Abstr. No 14, 839 (Society for Neuroscience, Washington DC, USA, 2004).

  123. Polleux, F., Dehay, C. & Kennedy, H. Gradients and timing of the arrival of thalamic axons in the mouse neocortex. Soc. Neurosci. Abstr. 22, 1012 (1996).

    Google Scholar 

  124. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature 337, 265–267 (1989).

    CAS  PubMed  Google Scholar 

  125. Dehay, C., Giroud, P., Berland, M., Killackey, H. & Kennedy, H. Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: development of acetylcholinesterase and cytochrome oxydase patterns. J. Comp. Neurol. 376, 386–402 (1996).

    CAS  PubMed  Google Scholar 

  126. Dehay, C., Giroud, P., Berland, M., Killackey, H. P. & Kennedy, H. The contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the foetal monkey on the boundaries and dimensions of striate and extrastriate cortex. J. Comp. Neurol. 367, 70–89 (1996).

    CAS  PubMed  Google Scholar 

  127. Lopez-Bendito, G. & Molnar, Z. Thalamocortical development: how are we going to get there? Nature Rev. Neurosci. 4, 276–289 (2003).

    CAS  Google Scholar 

  128. Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    CAS  PubMed  Google Scholar 

  130. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    CAS  PubMed  Google Scholar 

  131. Popesco, M. C. et al. Human lineage-specific amplification, selection and neuronal expression of DUF1220 domains. Science 313, 1304–1307 (2006).

    CAS  PubMed  Google Scholar 

  132. Blaschke, A. J., Staley, K. & Chun, J. Widespread programmed cell death in proliferative and postmitotic regions of the foetal cerebral cortex. Development 122, 1165–1174 (1996).

    CAS  PubMed  Google Scholar 

  133. Rakic, P. Less is more: progenitor death and cortical size. Nature Neurosci. 8, 981–982 (2005).

    CAS  PubMed  Google Scholar 

  134. Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005).

    CAS  PubMed  Google Scholar 

  135. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  PubMed  Google Scholar 

  136. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    CAS  PubMed  Google Scholar 

  137. Sanada, K. & Tsai, L. H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    CAS  PubMed  Google Scholar 

  138. Chae, T. H., Kim, S., Marz, K. E., Hanson, P. I. & Walsh, C. A. The hyh mutation uncovers roles for α Snap in apical protein localization and control of neural cell fate. Nature Genet. 36, 264–270 (2004).

    CAS  PubMed  Google Scholar 

  139. Bond, J. & Woods, C. G. Cytoskeletal genes regulating brain size. Curr. Opin. Cell Biol. 18, 95–101 (2006).

    CAS  PubMed  Google Scholar 

  140. Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438–10443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Evans, P. D., Vallender, E. J. & Lahn, B. T. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ. Gene 375, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  142. Huttner, W. B. & Kosodo, Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin. Cell Biol. 17, 648–657 (2005).

    CAS  PubMed  Google Scholar 

  143. Van Hooser, S. D., Heimel, J. A., Chung, S. & Nelson, S. B. Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps. J. Neurosci. 26, 7680–7692 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kennedy, H., Douglas, R. J., Knoblauch, K. & Dehay, C. Self-organization and pattern formation in cortical networks in the primate. Novartis Found. Symp. in the press.

  145. Lukaszewicz, A. et al. The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb. Cortex 16 (Suppl. 1), 26–34 (2006).

    Google Scholar 

  146. Bishop, K. M., Goudreau, G. & O'Leary, D. D. Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288, 344–349 (2000).

    CAS  PubMed  Google Scholar 

  147. Rubenstein, J. L. & Rakic, P. Genetic control of cortical development. Cereb. Cortex 9, 521–523 (1999).

    CAS  PubMed  Google Scholar 

  148. Hebert, J. M., Mishina, Y. & McConnell, S. K. BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35, 1029–1041 (2002).

    CAS  PubMed  Google Scholar 

  149. Furuta, Y., Piston, D. W. & Hogan, B. L. M. Bone morphogenic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  150. Shimogori, T., Banuchi, V., Ng, H. Y., Strauss, J. B. & Grove, E. A. Embryonic signaling centres expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131, 5639–5647 (2004).

    CAS  PubMed  Google Scholar 

  151. Monuki, E. S. & Walsh, C. A. Mechanisms of cerebral cortical patterning in mice and humans. Nature Neurosci. 4, 1199–1206 (2001).

    CAS  PubMed  Google Scholar 

  152. Mallamaci, A. et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J. Neurosci. 20, 1109–1118 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou, C., Tsai, S. Y. & Tsai, M. J. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev. 15, 2054–2059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. O'Leary, D. D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002).

    CAS  PubMed  Google Scholar 

  155. Garel, S., Huffman, K. J. & Rubenstein, J. L. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130, 1903–1914 (2003).

    CAS  PubMed  Google Scholar 

  156. Fukuchi-Shimogori, T. & Grove, E. A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001). A breakthrough study showing that FGF signalling affects both the relative dimensions and identity of cortical regions.

    CAS  PubMed  Google Scholar 

  157. Shimogori, T. & Grove, E. A. Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J. Neurosci. 25, 6550–6560 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Abu-Khalil, A., Fu, L., Grove, E. A., Zecevic, N. & Geschwind, D. H. Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J. Comp. Neurol. 474, 276–288 (2004).

    CAS  PubMed  Google Scholar 

  159. Huffman, K. J. et al. Formation of cortical fields on a reduced cortical sheet. J. Neurosci 19, 9939–9952 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. Dev. Brain Res. 62, 137–141 (1991).

    CAS  Google Scholar 

  161. Suner, I. & Rakic, P. Numerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys. Vis. Neurosci. 13, 585–590 (1996).

    CAS  PubMed  Google Scholar 

  162. Zetterberg, A., Larsson, O. & Wiman, K. G. What is the restriction point? Curr. Opin. Cell Biol. 7, 835–842 (1995).

    CAS  PubMed  Google Scholar 

  163. Sherr, C. J. & Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 16, 1149–1163 (1995).

    Google Scholar 

  164. Zindy, F. et al. Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Diff. 8, 1139–1150 (1997).

    CAS  PubMed  Google Scholar 

  165. van Lookeren Campagne, M. & Gill, R. Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1 and the proto-oncogene Bax. J. Comp. Neurol. 397, 181–198 (1998).

    CAS  PubMed  Google Scholar 

  166. Coskun, V. & Luskin, M. B. The expression pattern of the cell cycle inhibitor p19(INK4d) by progenitor cells of the rat embryonic telencephalon and neonatal anterior subventricular zone. J. Neurosci. 21, 3092–3103 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Delalle, I., Takahashi, T., Nowakowski, R. S., Tsai, L. H. & Caviness, V. S. Jr. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization. Cereb. Cortex 9, 824–832 (1999).

    CAS  PubMed  Google Scholar 

  168. Knoepfler, P. S., Cheng, P. F. & Eisenman, R. N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev. 16, 2699–2712 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell 85, 707–720 (1996).

    CAS  PubMed  Google Scholar 

  170. Ferguson, K. L. et al. Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J. 21, 3337–3346 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Korr, H. Proliferation of Different Cell Types in the Brain Springer. (Berlin, 1980).

    Google Scholar 

  172. Rakic, P. Kinetics of proliferation and latency between final division and onset of differentiation of cerebellar stellate and basket neurons. J. Comp. Neurol. 147, 523–546 (1973).

    CAS  PubMed  Google Scholar 

  173. Reznikov, K. Cell proliferation and cytogenesis in the mouse hippocampus. Adv. Anat. Embryol. Cell Biol. 122, 1–83 (1990).

    Google Scholar 

Download references

Acknowledgements

Financial support from FP6-2005 grant IST-1583 (Daisy), ANR-05-NEUR-008 and ANR-06-NEUR-CMMCS is acknowledged. We thank our present and past collaborators for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colette Dehay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Arealization

The developmental process that leads to the breaking up of the cortical sheet into anatomically, functionally and connectionally distinct areas.

Interkinetic migration

The back and forth motion of the nucleus of cortical precursors in the ventricular zone during the cell cycle.

Enucleation

Surgical removal of part of the eye.

Mitotic history technique

Quantitative analysis of nuclear labelling in the adult following S phase labelling during development.

Corticopetal axons

Axons originating from neurons located outside the cortex that project to cortical areas.

Corticofugal axons

Axons originating from cortical neurons that project outside the cortex to subcortical structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehay, C., Kennedy, H. Cell-cycle control and cortical development. Nat Rev Neurosci 8, 438–450 (2007). https://doi.org/10.1038/nrn2097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing