Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Brain plasticity and mental processes: Cajal again

Abstract

The year 2006 marks the 100th anniversary of the first Nobel Prize for Physiology or Medicine for studies in the field of the Neurosciences jointly awarded to Camillo Golgi and Santiago Ramón y Cajal for their key contributions to the study of the nervous system. This award represented the beginning of the modern era of neuroscience. Using the Golgi method, Cajal made fundamental, but often unappreciated, contributions to the study of the relationship between brain plasticity and mental processes. Here, I focus on some of these early experiments and how they continue to influence studies of brain plasticity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motility in vivo of nerve cells.
Figure 2: An axon terminal in proximity to a neuronal soma in the hypothalamic arcuate nucleus.
Figure 3: Changes in dendritic spines in cultured hippocampal neurons after conditioning stimulation.
Figure 4: Morphological variations in dendrites and dendritic spines.
Figure 5: Cajal's dendritic-spine-based explanation of certain activity-dependent changes in cortical connections.
Figure 6: Developmental regulation of the motility of dendritic spines and filopodia.
Figure 7: Cortical plasticity and trauma.

References

  1. DeFelipe, J. Sesquicentennial of the birthday of Santiago Ramón y Cajal (1852–2002), the father of modern neuroscience. Trends Neurosci. 25, 481–484 (2002).

    Article  PubMed  Google Scholar 

  2. Ramón y Cajal, S. Estudios Sobre la Degeneración y Regeneración del Sistema Nervioso (Moya, Madrid, 1913–1914); reprinted and edited with additional translations by DeFelipe, J. & Jones, E. G. Cajal's Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, New York, 1991).

    Chapter  Google Scholar 

  3. Sotelo, C. The chemotactic hypothesis of Cajal a century behind. Changing views of Cajal's neuron. Prog. Brain Res. 136, 11–20 (2002).

    Article  PubMed  Google Scholar 

  4. Shepherd, G. M. Foundations of the Neuron Doctrine (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  5. Stahnisch, F. W. & Nitsch, R. Santiago Ramón y Cajal's concept of neuronal plasticity: the ambiguity lives on. Trends Neurosci. 25, 589–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Stahnisch, F. W. Making the brain plastic: early neuroanatomical staining techniques and the pursuit of structural plasticity. J. Hist. Neurosci. 12, 413–435 (2003).

    Article  PubMed  Google Scholar 

  7. Jones, E. G. Plasticity and neuroplasticity. J. Hist. Neurosci. 13, 293 (2004).

    Article  PubMed  Google Scholar 

  8. Jones, E. G. Plasticity and neuroplasticity. J. Hist. Neurosci. 9, 37–39 (2000).

    Article  PubMed  Google Scholar 

  9. Berlucchi, G. The origin of the term plasticity in the neurosciences: Ernesto Lugaro and chemical synaptic transmission. J. Hist. Neurosci. 11, 305–309 (2002).

    Article  PubMed  Google Scholar 

  10. Ramón y Cajal, S. Consideraciones generales sobre la morfología de la célula nerviosa. La Veterinaria Española 37, 257–260, 273–275, 289–291 (1894) (in Spanish).

    Google Scholar 

  11. Golgi, C. Sulla struttura della sostanza grigia del cervello (Comunicazione preventiva). Gaz. Med. Ital. Lombardia 33, 244–246 (1873) (in Italian).

    Google Scholar 

  12. Ramón y Cajal, S. Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Patol. 1, 1–10 (1888) (in Spanish).

    Google Scholar 

  13. Wiedersheim, R. Bewegungserscheinungen im gehirn von leptodora hyalina. Anat. Anz. 5, 673–679 (1890) (in German).

    Google Scholar 

  14. Rabl-Rückhard, H. Sind die ganglienzellen amöboid? Eine hypothese zur mechanik psychischer vorgänge. Neurol. Centralbl. 9, 199–200 (1890) (in German).

    Google Scholar 

  15. Lépine, R. Sur un cas d'hystérie á form particulière. Rev. Méd. 14, 713–728 (1894) (in French).

    Google Scholar 

  16. Duval, M. Hypothèses sur la physiologie des centres nerveux; théorie histologique du sommeil. Compt. Rend. Soc. Biol. 47, 74–77 (1895) (in French).

    Google Scholar 

  17. Ramón y Cajal, S. Algunas conjeturas sobre el mecanismo anatómico de la ideación, asociación y atención. Rev. Med. Cirug. Prác. 36, 497–508 (1895) (in Spanish).

    Google Scholar 

  18. Garcia-Segura, L. M., Chowen, J. A., Parducz, A. & Naftolin, F. Gonadal hormones as promoters of structural synaptic plasticity: cellular mechanisms. Prog. Neurobiol. 44, 279–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Theodosis D. T. & Poulain, D. A Contribution of astrocytes to activity-dependent structural plasticity in the adult brain. Adv. Exp. Med. Biol. 468, 175–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ramón y Cajal, S. El nuevo concepto de la histología de los centros nerviosos. Rev. Ciencias Méd. Barcelona 18, 361–376, 457–476, 505–520, 529–541 (1892) (in Spanish).

    Google Scholar 

  21. Tanzi, E. I fatti e le induzione nell'odierna istologia del sistema nervoso. Riv. Sper. Freniat. Med. Leg. 19, 419–472 (1893) (in Italian).

    Google Scholar 

  22. Ramón y Cajal, S. The Croonian lecture: la fine structure des centres nerveux. Proc. Royal Soc. Lond. 55, 444–468 (1894) (in French).

    Article  Google Scholar 

  23. Jones, E. G. Santiago Ramón y Cajal and the Croonian lecture, March 1894. Trends Neurosci. 17, 190–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Ramón y Cajal, S. Consideraciones Generales Sobre la Morfología de la Célula Nerviosa (Moya, Madrid, 1894) (in Spanish).

    Google Scholar 

  25. Volkmar, F. R. & Greenough, W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176, 1145–1147 (1972).

    Article  Google Scholar 

  26. Globus, A., Rosenzweig, M. R., Bennett, E. L. & Diamond, M. C. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J. Comp. Physiol. Psychol. 82, 175–181 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Benavides-Piccione, R. et al. On dendrites in Down syndrome and DS murine models: a spiny way to learn. Progr. Neurobiol. 74, 111–126 (2004).

    Article  CAS  Google Scholar 

  28. Ramón y Cajal, S. Textura de las circunvoluciones cerebrales de los mamíferos inferiores. Nota preventiva. Gac. Méd. Catalana 1, 22–31 (1890) (in Spanish).

    Google Scholar 

  29. DeFelipe, J. & Jones, E. G. Cajal on the Cerebral Cortex (Oxford University Press, New York, 1988).

    Google Scholar 

  30. Ramón y Cajal, S. ¿Neuronismo o reticularismo? Las pruebas objetivas de la unidad anatómica de las células nerviosas. Arch. Neurobiol. 13, 217–291, 579–646 (1933) (in Spanish).

    Google Scholar 

  31. Portera-Cailliau, C. & Yuste, R. On the function of dendritic filopodia. Rev. Neurol. 33, 1158–1166 (2001).

    CAS  PubMed  Google Scholar 

  32. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183, 1592–1593 (1959).

    Article  CAS  PubMed  Google Scholar 

  33. DeFelipe, J. & Fariñas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Globus, A. & Scheibel, A. The effect of visual deprivation on cortical neurons: a Golgi study. Exp. Neurol. 19, 331–345 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Valverde, F. Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Res. 33, 1–11 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Marín-Padilla, M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations. A Golgi study. Brain Res. 44, 625–629 (1972).

    Article  PubMed  Google Scholar 

  37. Purpura, D. Dendritic spine 'dysgenesis' and mental retardation. Science 186, 1126–1128 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Yuste, R. & Bonhoeffer, T. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nature Rev. Neurosci. 5, 24–34 (2004).

    Article  CAS  Google Scholar 

  39. Segal, M. Dendritic spines and long-term plasticity. Nature Rev. Neurosci. 6, 277–284 (2005).

    Article  CAS  Google Scholar 

  40. Hayashi, Y. & Majewska, A. K. Dendritic spine geometry: functional implication and regulation. Neuron 19, 529–532 (2005).

    Article  Google Scholar 

  41. Matus, A. Growth of dendritic spines: a continuing story. Curr. Opin. Neurobiol. 15, 67–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Demoor, J. La plasticité morphologique des neurones cérébraux. Arch. Biol. Bruxelles 14, 723–752 (1896) (in French).

    Google Scholar 

  43. Stefanowska, M. Les appendices terminaux des dendrites cérébraux et leur différents états physiologiques. Ann. Soc. R. Sci. Méd. Nat. Brux. 6, 351–407 (1897) (in French).

    Google Scholar 

  44. Ramón y Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados (Moya, Madrid, 1899, 1904) (in Spanish).

    Google Scholar 

  45. Black, S. E. Pseudopods and synapses: the amoeboid theories of neuronal mobility and the early formulation of the synapse concept, 1894–1900. Bull. Hist. Med. 55, 34–58 (1981).

    CAS  PubMed  Google Scholar 

  46. Blomberg, F., Cohen, R. & Siekevitz, P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J. Cell Biol. 86, 831–845 (1977).

    Google Scholar 

  47. Crick, F. Do spines twitch? Trends Neurosci. 5, 44–46 (1982).

    Article  Google Scholar 

  48. Fifková, E. & Delay, R. J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95, 345–350 (1982).

    Article  PubMed  Google Scholar 

  49. Matus, A., Ackermann, M., Pehling, G., Byers, H. R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl Acad. Sci. USA 79, 7590–7594 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Meth. 54, 151–162 (1994).

    Article  CAS  Google Scholar 

  52. Scout, E. K. & Luo, L. How do dendrites take their shape? Nature Neurosci. 4, 359–365 (2001).

    Article  Google Scholar 

  53. Nimchinsky, E., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. A. & Yuste, R. Developmental regulation of spine motility in mammalian CNS. Proc. Natl Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Portera-Cailliau, C., Pan, D. T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lendvai, B., Stern, E., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Tello, F. La influencia del neurotropismo en la regeneración de los centros nerviosos. Trab. Lab. Invest. Biol. Univ. Madr. 9, 123–159 (1911) (in Spanish).

    Google Scholar 

  60. Jones, E. G. The neuron doctrine. J. Hist. Neurosci. 3, 3–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. von Waldeyer-Hartz, W. Über einige neuere forschungen im gebiete der anatomie des centralnervensystems. Dtsch. Med. Wschr. 17, 1213–1218, 1244–1246, 1267–1269, 1287–1289, 1331–1332, 1352–1356 (1891) (in German).

    Article  Google Scholar 

  62. Portera-Cailliau, C. & Yuste, R. Espinas y filopodios en el cerebro. Mente y Cerebro 9, 10–21 (2004) (in Spanish).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to E. G. Jones and R. Yuste for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeFelipe, J. Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci 7, 811–817 (2006). https://doi.org/10.1038/nrn2005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing