Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular biology of amyotrophic lateral sclerosis: insights from genetics

Key Points

  • Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons for which there is no therapeutic treatment currently available. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, leading to the paralysis of voluntary muscles.

  • Most cases of ALS are classed as sporadic ALS. However, 10% of cases are inherited (known as familial ALS). The causes of most cases of ALS are as yet undefined, but investigations have identified multiple perturbations of cellular function in ALS motor neurons, including excessive excitatory tone, protein misfolding, impaired energy production, abnormal calcium metabolism, altered axonal transport and the activation of calcium-activated proteases and nucleases.

  • Five Mendelian gene defects have been reported to cause ALS. The protein products of these mutated genes are cytosolic Cu/Zn superoxide dismutase (SOD1), alsin, senataxin, VAMP (vesicle-associated membrane protein)-associated protein B and dynactin. Defects in two mitochondrial genes have been shown to also cause motor neuron disorders with clinical features that are suggestive of ALS.

  • Understanding of the pathobiology of ALS is based largely on studies of ALS-associated gene mutations, with most data being derived from studies of cell death initiated by mutant SOD1, which triggers motor neuron disease through one or more toxic properties. It is thought that either the mutant protein perturbs oxygen metabolism or that the mutated protein is misfolded and so conformationally unstable.

  • Another set of hypotheses propose that the conformational instability of mutant SOD1 induces the formation of harmful aggregates. It has been proposed that these inclusions could both mediate oxyradical chemistry and overwhelm the proteasome. The latter is predicted to impair protein degradation and recycling and to lead to the sequestration of proteins that are crucial for cellular processes.

  • Apoptosis is also thought to have a role in ALS. Reports suggest that SOD1 mutations transform SOD1 from an anti- to a pro-apoptotic protein. Cultured neuronal cells either transfected or microinjected with mutant SOD1 cDNAs die by apoptosis.

  • Disruption of other cellular processes has also been implicated in the pathogenesis of ALS, including dysfunction of mitochondria, altered axonal transport, and enhanced glutamate sensitivity and activation of the machinery of programmed cell death. Moreover, non-neuronal cells are thought to affect ALS pathogenesis through their function as modulators of neuron death.

Abstract

Amyotrophic lateral sclerosis (ALS) is a paralytic disorder caused by motor neuron degeneration. Mutations in more than 50 human genes cause diverse types of motor neuron pathology. Moreover, defects in five Mendelian genes lead to motor neuron disease, with two mutations reproducing the ALS phenotype. Analyses of these genetic effects have generated new insights into the diverse molecular pathways involved in ALS pathogenesis. Here, we present an overview of the mechanisms for motor neuron death and of the role of non-neuronal cells in ALS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of mutant SOD1-mediated toxicity.
Figure 2: Mutant SOD1 impairs multiple cellular functions.
Figure 3: The mitochondrion as a target of mutant SOD1.
Figure 4: Axonal transport is abnormal in ALS.

Similar content being viewed by others

References

  1. Mulder, D. W. Clinical limits of amyotrophic lateral sclerosis. Adv. Neurol. 36, 15–22 (1982).

    CAS  PubMed  Google Scholar 

  2. McGuire, V., Longstreth, W. T. Jr, Koepsell, T. D. & van Belle, G. Incidence of amyotrophic lateral sclerosis in three counties in western Washington state. Neurology 47, 571–573 (1996).

    CAS  PubMed  Google Scholar 

  3. Mitsumoto, H., Chad, D. A. & Pioro, E. P. Amyotrophic Lateral Sclerosis (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  4. Kurtzke, J. K. L. in Clinical Neurology (ed. Joynt, R.) (Lippincott, Philadelphia, 1989).

    Google Scholar 

  5. Kurtzke, J. F. Risk factors in amyotrophic lateral sclerosis. Adv. Neurol. 56, 245–270 (1991).

    CAS  PubMed  Google Scholar 

  6. Ince, P. G. in Amyotrophic Lateral Sclerosis (eds Brown, R. H. Jr, Meininger, V. & Swash, M.) 83–112 (Martin Dunitz, London, 2000).

    Google Scholar 

  7. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci. 2, 806–819 (2001).

    CAS  Google Scholar 

  8. Rowland, L. P. in Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases (ed. Rowland, L. P.) 3–23 (Raven, 1992).

    Google Scholar 

  9. MacGowan, D. J., Scelsa, S. N. & Waldron, M. An ALS-like syndrome with new HIV infection and complete response to antiretroviral therapy. Neurology 57, 1094–1097 (2001).

    CAS  PubMed  Google Scholar 

  10. Steele, A. J. et al. Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. Neurology 64, 454–458 (2005).

    CAS  PubMed  Google Scholar 

  11. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). Describes the hallmark discovery that mutations in SOD1 cause ALS in a subset of familial cases.

    CAS  PubMed  Google Scholar 

  12. Yang, Y. et al. The gene encoding alsin, a protein with three guaninenucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nature Genet. 29, 160–165 (2001).

    CAS  PubMed  Google Scholar 

  13. Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nature Genet. 29, 166–173 (2001).

    CAS  PubMed  Google Scholar 

  14. Chance, P. F. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am. J. Hum. Genet. 62, 633–640 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y. Z. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003). References 12–17 describe ALS-causing gene mutations.

    CAS  PubMed  Google Scholar 

  18. Ruddy, D. M. et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am. J. Hum. Genet. 73, 390–396 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hentati, A. et al. Linkage of a commoner form of recessive amyotrophic lateral sclerosis to chromosome 15q15-q22 markers. Neurogenetics 2, 55–60 (1998).

    CAS  PubMed  Google Scholar 

  20. Sapp, P. et al. Identification of three novel mutations in the gene for Cu/Zn superoxide dismutase in patients with familial amyotrophic lateral sclerosis. Neuromuscul. Disord. 5, 353–357 (1995).

    CAS  PubMed  Google Scholar 

  21. Abalkhail, H., Mitchell, J., Habgood, J., Orrell, R. & de Belleroche, J. A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1–16q12.2. Am. J. Hum. Genet. 73, 383–389 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong, S. et al. X-linked dominant locus for late-onset familial amyotrophic lateral sclerosis. Soc. Neurosci. Abstr. 24, 478 (1998).

    Google Scholar 

  23. Hand, C. K. et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am. J. Hum. Genet. 70, 251–256 (2002).

    CAS  PubMed  Google Scholar 

  24. Morita, M. et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66, 839–844 (2006).

    CAS  PubMed  Google Scholar 

  25. Hosler, B. A. et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284, 1664–1669 (2000).

    CAS  PubMed  Google Scholar 

  26. Andersen, P. M. et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4, 62–73 (2003).

    CAS  PubMed  Google Scholar 

  27. Andersen, P. M. et al. Phenotypic heterogeneity in motor neuron disease patients with CuZn-superoxide dismutase mutations in Scandinavia. Brain 120, 1723–1737 (1997).

    PubMed  Google Scholar 

  28. Radunovic, A. et al. Copper and zinc levels in familial amyotrophic lateral sclerosis patients with Cu/Zn gene mutations. Ann. Neurol. 42, 130–131 (1997).

    CAS  PubMed  Google Scholar 

  29. Yamanaka, K. & Cleveland, D. W. Determinants of rapid disease progression in ALS. Neurology 65, 1859–1860 (2005).

    PubMed  Google Scholar 

  30. Cudkowicz, M. E., McKenna-Yasek, D., Chen, C., Hedley-Whyte, E. T. & Brown, R. H. Jr. Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene [see comments]. Ann. Neurol. 43, 703–710 (1998).

    CAS  PubMed  Google Scholar 

  31. Andersen, P. M. et al. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain 119, 1153–1172 (1996).

    PubMed  Google Scholar 

  32. Soares, M. L. et al. Haplotypes and DNA sequence variation within and surrounding the transthyretin gene: genotype-phenotype correlations in familial amyloid polyneuropathy (V30M) in Portugal and Sweden. Eur. J. Hum. Genet. 12, 225–237 (2004).

    CAS  PubMed  Google Scholar 

  33. Topp, J. D., Gray, N. W., Gerard, R. D. & Horazdovsky, B. F. Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J. Biol. Chem. 23, 24612–24623 (2004).

    Google Scholar 

  34. Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671–1687 (2003).

    CAS  PubMed  Google Scholar 

  35. Kanekura, K. et al. Alsin, the product of ALS2 gene, suppresses SOD1 mutant neurotoxicity through RhoGEF domain by interacting with SOD1 mutants. J. Biol. Chem. 279, 19247–19256 (2004).

    CAS  PubMed  Google Scholar 

  36. Panzeri, C. et al. The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain 129, 1710–1719 (2006).

    PubMed  Google Scholar 

  37. Yamanaka, K. et al. Unstable mutants in the peripheral endosomal membrane component ALS2 cause early-onset motor neuron disease. Proc. Natl Acad. Sci. USA 100, 16041–16046 (2003).

    CAS  PubMed  Google Scholar 

  38. Cai, H. et al. Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J. Neurosci. 25, 7567–7574 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hadano, S. et al. Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum. Mol. Genet. 15, 233–250 (2006).

    CAS  PubMed  Google Scholar 

  40. Chen, Y. Z. et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol. Dis. 23, 97–108 (2006).

    CAS  PubMed  Google Scholar 

  41. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).

    CAS  PubMed  Google Scholar 

  42. Comi, G. P. et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann. Neurol. 43, 110–116 (1998).

    CAS  PubMed  Google Scholar 

  43. Borthwick, G. M. et al. Motor neuron disease in a patient with a mitochondrial tRNAIle mutation. Ann. Neurol. 59, 570–574 (2006).

    CAS  PubMed  Google Scholar 

  44. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    CAS  PubMed  Google Scholar 

  45. Van Vught, P. W. et al. Lack of association between VEGF polymorphisms and ALS in a Dutch population. Neurology 65, 1643–1645 (2005).

    CAS  PubMed  Google Scholar 

  46. Greenway, M. J. et al. A novel candidate region for ALS on chromosome 14q11.2. Neurology 63, 1936–1938 (2004).

    CAS  PubMed  Google Scholar 

  47. Al-Chalabi, A. et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164 (1999).

    CAS  PubMed  Google Scholar 

  48. Figlewicz, D. A. et al. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761 (1994).

    CAS  PubMed  Google Scholar 

  49. Tomkins, J. et al. Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967–3970 (1998).

    CAS  PubMed  Google Scholar 

  50. Corcia, P. et al. Abnormal SMN1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis. Ann. Neurol. 51, 243–246 (2002).

    CAS  PubMed  Google Scholar 

  51. Veldink, J. H. et al. Homozygous deletion of the survival motor neuron 2 gene is a prognostic factor in sporadic ALS. Neurology 56, 749–752 (2001).

    CAS  PubMed  Google Scholar 

  52. Reaume, A. et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13, 43–47 (1996).

    CAS  PubMed  Google Scholar 

  53. Gurney, M. Mutant mice, Cu, Zn superoxide dismutase, and motor neuron degeneration. Science 266, 1586 (1994). The first description of the transgenic mouse model of ALS.

    Google Scholar 

  54. Cleveland, D. W., Laing, N., Hurse, P. V. & Brown, R. H. Jr. Toxic mutants in Charcot's sclerosis [letter; comment]. Nature 378, 342–343 (1995).

    CAS  PubMed  Google Scholar 

  55. Beckman, J. S., Carson, M., Smith, C. D. & Kuppenol, W. H. ALS, SOD, and peroxynitrite. Nature 364, 584 (1993).

    CAS  PubMed  Google Scholar 

  56. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515–518 (1996).

    CAS  PubMed  Google Scholar 

  57. Estevez, A. G. et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286, 2498–2500 (1999).

    CAS  PubMed  Google Scholar 

  58. Andrus, P. K., Fleck, T. J., Gurney, M. E. & Hall, E. D. Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 71, 2041–2048 (1998).

    CAS  PubMed  Google Scholar 

  59. Hall, E., Andrus, P., Oostveen, J., Fleck, T. & Gurney, M. Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J. Neurosci. Res. 53, 66–77 (1998).

    CAS  PubMed  Google Scholar 

  60. Bruijn, L. et al. Elevated free nitrotyrosine levels but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-liked superoxide dismutase 1 mutant. Proc. Natl Acad. Sci. USA 94, 7606–7611 (1997).

    CAS  PubMed  Google Scholar 

  61. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    CAS  PubMed  Google Scholar 

  62. Jaarsma, D. et al. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol. Dis. 7, 623–643 (2000).

    CAS  PubMed  Google Scholar 

  63. Deng, H. X. et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc. Natl Acad. Sci. USA 103, 7142–7147 (2006).

    CAS  PubMed  Google Scholar 

  64. Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (2000).

    CAS  PubMed  Google Scholar 

  65. Wang, J. et al. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum. Mol. Genet. 12, 2753–2764 (2003).

    CAS  PubMed  Google Scholar 

  66. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H. & Gordon, J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 92, 689–693 (1995).

    CAS  PubMed  Google Scholar 

  67. Bush, A. I. Is ALS caused by an altered oxidative activity of mutant superoxide dismutase? Nature Neurosci. 5, 919; author reply 919–920 (2002).

    CAS  PubMed  Google Scholar 

  68. Jonsson, P. A. et al. Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129, 451–464 (2006).

    PubMed  Google Scholar 

  69. Johnston, J. A., Dalton, M. J., Gurney, M. E. & Kopito, R. R. Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 12571–12576 (2000).

    CAS  Google Scholar 

  70. Wang, J., Xu, G. & Borchelt, D. R. High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol. Dis. 9, 139–148 (2002).

    CAS  PubMed  Google Scholar 

  71. Ray, S. S. et al. An intersubunit disulfide bond prevents in vitro aggregation of a superoxide dismutase-1 mutant linked to familial amytrophic lateral sclerosis. Biochemistry 43, 4899–4905 (2004).

    CAS  PubMed  Google Scholar 

  72. Matsumoto, G., Kim, S. & Morimoto, R. I. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J. Biol. Chem. 281, 4477–4485 (2006).

    CAS  PubMed  Google Scholar 

  73. Sato, T. et al. Rapid disease progression correlates with instability of mutant SOD1 in familial ALS. Neurology 65, 1954–1957 (2005).

    CAS  PubMed  Google Scholar 

  74. Lindberg, M. J., Bystrom, R., Boknas, N., Andersen, P. M. & Oliveberg, M. Systematically perturbed folding patterns of amyotrophic lateral sclerosis (ALS)-associated SOD1 mutants. Proc. Natl Acad. Sci. USA 102, 9754–9759 (2005).

    CAS  PubMed  Google Scholar 

  75. Shinder, G. A., Lacourse, M. -C., Minotti, S. & Durham, H. D. Mutant cu/zn superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276, 12791–12796 (2001).

    CAS  PubMed  Google Scholar 

  76. Pasinelli, P. et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43, 19–30 (2004).

    CAS  PubMed  Google Scholar 

  77. Guegan, C. & Przedborski, S. Programmed cell death in amyotrophic lateral sclerosis. J. Clin. Invest. 111, 153–161 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Durham, H., Roy, J., Dong, L. & Figlewicz, D. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropath. Exp. Neurol. 56, 523–530 (1997).

    CAS  PubMed  Google Scholar 

  79. Pasinelli, P., Borchelt, D. R., Houseweart, M. K., Cleveland, D. W. & Brown, R. H. Jr. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc. Natl Acad. Sci. USA 95, 15763–15768 (1998).

    CAS  PubMed  Google Scholar 

  80. Pasinelli, P., Houseweart, M. K., Brown, R. H. Jr & Cleveland, D. W. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 97, 13901–13906 (2000).

    CAS  PubMed  Google Scholar 

  81. Vukosavic, S. et al. Delaying caspase activation by Bcl-2: a clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci. 20, 9119–9125 (2000).

    CAS  PubMed  Google Scholar 

  82. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 (2000).

    CAS  PubMed  Google Scholar 

  83. Vukosavic, S., Dubois-Dauphin, M., Romero, N. & Przedborski, S. Bax and Bcl-2 intercation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 73, 2460–2468 (1999).

    CAS  PubMed  Google Scholar 

  84. Bacman, S. R., Bradley, W. G. & Moraes, C. T. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol. Neurobiol. 33, 113–131 (2006).

    CAS  PubMed  Google Scholar 

  85. Boston-Howes, W. et al. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J. Biol. Chem. 281, 14076–14084 (2006).

    CAS  PubMed  Google Scholar 

  86. Guegan, C., Vila, M., Rosoklija, G., Hays, A. P. & Przedborski, S. Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. J. Neurosci. 21, 6569–6576 (2001).

    CAS  PubMed  Google Scholar 

  87. Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl Acad. Sci. USA 92, 3024–3028 (1995).

    CAS  PubMed  Google Scholar 

  88. Alexianu, M. E., Kozovska, M. & Appel, S. H. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57, 1282–1289 (2001).

    CAS  PubMed  Google Scholar 

  89. Elliott, J. L. Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res. 95, 172–178 (2001).

    CAS  PubMed  Google Scholar 

  90. Almer, G. et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol. 49, 176–185 (2001).

    CAS  PubMed  Google Scholar 

  91. Hensley, K. et al. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J. Neuroinflammation 3, 2 (2006).

    PubMed  PubMed Central  Google Scholar 

  92. Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron 35, 1067–1083 (2002).

    CAS  PubMed  Google Scholar 

  93. Raoul, C. et al. Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. Proc. Natl Acad. Sci. USA 103, 6007–6012 (2006).

    CAS  PubMed  Google Scholar 

  94. Kikuchi, H. et al. Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl Acad. Sci. USA 103, 6025–6030 (2006).

    CAS  PubMed  Google Scholar 

  95. Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci. 9, 108–118 (2006).

    CAS  PubMed  Google Scholar 

  96. Atsumi, T. The ultrastructure of intramuscular nerves in amyotrophic lateral sclerosis. Acta Neuropath. 55, 193–198 (1981).

    CAS  PubMed  Google Scholar 

  97. Afifi, A., Aleu, F., Goodgold, J. & MacKay, B. Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology 16, 475–481 (1966).

    CAS  PubMed  Google Scholar 

  98. Wiedemann, F. R. et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 156, 65–72 (1998).

    CAS  PubMed  Google Scholar 

  99. Siklos, L. et al. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophic lateral sclerosis. Ann. Neurol. 39, 203–216 (1996).

    CAS  PubMed  Google Scholar 

  100. Higgins, C. M., Jung, C. & Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4, 16 (2003).

    PubMed  PubMed Central  Google Scholar 

  101. Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250 (1998).

    CAS  PubMed  Google Scholar 

  102. Bendotti, C. et al. Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity. J. Neurol. Sci. 191, 25–33 (2001).

    CAS  PubMed  Google Scholar 

  103. Sasaki, S., Warita, H., Murakami, T., Abe, K. & Iwata, M. Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. (Berl.) 107, 461–474 (2004).

    Google Scholar 

  104. Rizzardini, M. et al. Neurodegeneration induced by complex I inhibition in a cellular model of familial amyotrophic lateral sclerosis. Brain Res. Bull. 69, 465–474 (2006).

    CAS  PubMed  Google Scholar 

  105. Jung, C., Higgins, C. M. & Xu, Z. Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem. 83, 535–545 (2002).

    CAS  PubMed  Google Scholar 

  106. Damiano, M. et al. Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem. 96, 1349–1361 (2006).

    CAS  PubMed  Google Scholar 

  107. Menzies, F. M. et al. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125, 1522–1533 (2002).

    PubMed  Google Scholar 

  108. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    CAS  PubMed  Google Scholar 

  109. Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 74–78 (2002).

    CAS  PubMed  Google Scholar 

  110. Higgins, C. M., Jung, C., Ding, H. & Xu, Z. Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J. Neurosci. 22, RC215 (2002).

    PubMed  Google Scholar 

  111. Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29626–29633 (2002).

    CAS  PubMed  Google Scholar 

  112. Liu, J. et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17 (2004).

    CAS  PubMed  Google Scholar 

  113. Okado-Matsumoto, A. & Fridovich, I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc. Natl Acad. Sci. USA 99, 9010–9014 (2002).

    CAS  PubMed  Google Scholar 

  114. Takeuchi, H. K., Ishigaki, Y., Doyu, S. M. & Sobue, G. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J. Biol. Chem. 277, 50966–50972 (2002).

    CAS  PubMed  Google Scholar 

  115. Bergemalm, D. et al. Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J. Neurosci. 26, 4147–4154 (2006).

    CAS  PubMed  Google Scholar 

  116. Sasaki, S. & Iwata, M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology 47, 535–540 (1996).

    CAS  PubMed  Google Scholar 

  117. Sasaki, S., Warita, H., Abe, K. & Iwata, M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. (Berl.) 100, 48–56 (2005).

    Google Scholar 

  118. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Borchelt, D. R. et al. Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol. Dis. 5, 27–35 (1998).

    CAS  PubMed  Google Scholar 

  120. Williamson, T. & Cleveland, D. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutant to motor neurons. Nature Neurosci. 1, 50–56 (1999).

    Google Scholar 

  121. Murakami, T. et al. Impaired retrograde axonal transport of adenovirus-mediated E. coli LacZ gene in the mice carrying mutant SOD1 gene. Neurosci. Lett. 308, 149–152 (2001).

    CAS  PubMed  Google Scholar 

  122. Rao, M. V. & Nixon, R. A. Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. Neurochem. Res. 28, 1041–1047 (2003).

    CAS  PubMed  Google Scholar 

  123. Ligon L. A. et al. Mutant superoxide dismutase disrupts cytoplasmic dynein in motor neurons. Neuroreport 16, 533–536 (2005).

    CAS  PubMed  Google Scholar 

  124. Witherden, A. S. et al. An integrated genetic, radiation hybrid, physical and transcription map of a region of distal mouse chromosome 12, including an imprinted locus and the 'Legs at odd angles' (Loa) mutation. Gene 283, 71–82 (2002).

    CAS  PubMed  Google Scholar 

  125. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    CAS  PubMed  Google Scholar 

  126. LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    CAS  PubMed  Google Scholar 

  127. Kieran, D. et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol. 169, 561–567 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Teuchert, M. et al. A dynein mutation attenuates motor neuron degeneration in SOD1(G93A) mice. Exp. Neurol. 198, 271–274 (2006).

    CAS  PubMed  Google Scholar 

  129. Vande Velde, C., Garcia, M. L., Yin, X., Trapp, B. D. & Cleveland, D. W. The neuroprotective factor Wlds does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med. 5, 193–203 (2004).

    CAS  PubMed  Google Scholar 

  130. Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 23, 4499–4508 (2003).

    CAS  PubMed  Google Scholar 

  131. Morfini, G., Pigino, G., Beffert, U., Busciglio, J. & Brady, S. T. Fast axonal transport misregulation and Alzheimer's disease. Neuromolecular Med. 2, 89–99 (2002).

    CAS  PubMed  Google Scholar 

  132. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol. 24, 8195–8209 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmitt-John, T. et al. Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nature Genet. 37, 1213–1215 (2005).

    CAS  PubMed  Google Scholar 

  134. Rothstein, J., Kammen, M., Levey, A., Martin, L. & Kuncl, R. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 (1995).

    CAS  PubMed  Google Scholar 

  135. Rothstein, J. D. et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18–25 (1990).

    CAS  PubMed  Google Scholar 

  136. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis [see comments]. N. Engl. J. Med. 326, 1464–1468 (1992).

    CAS  PubMed  Google Scholar 

  137. Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    CAS  Google Scholar 

  138. Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl Acad. Sci. USA 94, 4155–4160 (1997).

    CAS  PubMed  Google Scholar 

  139. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995).

    CAS  PubMed  Google Scholar 

  140. Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr & Hediger, M. A. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature Neurosci 2, 848 (1999).

    CAS  PubMed  Google Scholar 

  141. Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002).

    CAS  PubMed  Google Scholar 

  142. Lin, C. L. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602 (1998).

    CAS  PubMed  Google Scholar 

  143. Aoki, M. et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol. 43, 645–653 (1998).

    CAS  PubMed  Google Scholar 

  144. Trotti, D. et al. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J. Biol. Chem. 276, 576–582 (2001).

    CAS  PubMed  Google Scholar 

  145. Alexianu, M. E. et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 36, 846–858 (1994).

    CAS  PubMed  Google Scholar 

  146. Williams, D. N. C. & Ince, P. G. α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 42, 200–207 (1997).

    CAS  PubMed  Google Scholar 

  147. Ince, P. G., Shaw, P. J., Slade, J. Y., Jones, C. & Hudgson, P. Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol. (Berl.) 92, 395–403 (1996).

    CAS  Google Scholar 

  148. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor neuron impairment. J. Neurosci. 21, 3369–3374 (2001).

    CAS  PubMed  Google Scholar 

  149. Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci. 20, 660–665 (2000).

    CAS  PubMed  Google Scholar 

  150. Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003). Demonstrates the importance of non-neuronal cells in ALS pathogenesis.

    CAS  PubMed  Google Scholar 

  151. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). Elegantly highlights the importance of microglia for disease progression in transgenic ALS mice.

    CAS  PubMed  Google Scholar 

  152. Wang, J. et al. Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol. Dis. 20, 943–952 (2005).

    CAS  PubMed  Google Scholar 

  153. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    CAS  PubMed  Google Scholar 

  154. Mersiyanova, I. V. et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67, 37–46 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet. 26, 370–374 (2000).

    CAS  PubMed  Google Scholar 

  156. Kuhlenbaumer, G. Giant axonal neuropathy (GAN): case report and two novel mutations in the gigaxonin gene. Neurology 58, 1273–1276 (2002).

    CAS  PubMed  Google Scholar 

  157. Zhao, C. et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 105, 587–597 (2001).

    CAS  PubMed  Google Scholar 

  158. Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genet. 37, 289–294 (2005).

    PubMed  Google Scholar 

  159. Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet. 29, 326–331 (2001).

    CAS  PubMed  Google Scholar 

  160. Verhoeven, K. et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Patel, H. et al. SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nature Genet. 31, 347–348 (2002).

    CAS  PubMed  Google Scholar 

  162. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jordanova, A. et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genet. 38, 197–202 (2006).

    CAS  PubMed  Google Scholar 

  164. Kalaydjieva, L. et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am. J. Hum. Genet. 67, 47–58 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Grohmann, K. et al. Mutations in the gene encoding immunoglobulin mubinding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nature Genet. 29, 75–77 (2001).

    CAS  PubMed  Google Scholar 

  166. Evgrafov, O. V. et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nature Genet. 36, 602–606 (2004).

    CAS  PubMed  Google Scholar 

  167. Irobi, J., De Jonghe, P. & Timmerman, V. Molecular genetics of distal hereditary motor neuropathies. Hum. Mol. Genet. 13, R195–R202 (2004).

    CAS  PubMed  Google Scholar 

  168. White, R. J. & Reynolds, I. J. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J. Neurosci. 16, 5688–5697 (1996).

    CAS  PubMed  Google Scholar 

  169. Roa, B. B., Garcia, C. A. & Lupski, J. R. Charcot-Marie-Tooth disease type 1A: molecular mechanisms of gene dosage and point mutation underlying a common inherited peripheral neuropathy. Int. J. Neurol. 25–26, 97–107 (1991).

    PubMed  Google Scholar 

  170. Hayasaka, K. et al. De novo mutation of the myelin P0 gene in Dejerine-Sottas disease (hereditary motor and sensory neuropathy type III). Nature Genet. 5, 266–268 (1993).

    CAS  PubMed  Google Scholar 

  171. Street, V. A. et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60, 22–26 (2003).

    CAS  PubMed  Google Scholar 

  172. Warner, L. E. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nature Genet. 18, 382–384 (1998).

    CAS  PubMed  Google Scholar 

  173. Baxter, R. V. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nature Genet. 30, 21–22 (2002).

    CAS  PubMed  Google Scholar 

  174. Bolino, A. et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nature Genet. 25, 17–19 (2000).

    CAS  PubMed  Google Scholar 

  175. Senderek, J. et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum. Mol. Genet. 12, 349–356 (2003).

    CAS  PubMed  Google Scholar 

  176. Senderek, J. et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am. J. Hum. Genet. 73, 1106–1119 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Boerkoel, C. F. et al. Periaxin mutations cause recessive Dejerine-Sottas neuropathy. Am. J. Hum. Genet. 68, 325–333 (2001).

    CAS  PubMed  Google Scholar 

  178. Bergoffen, J. et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039–2042 (1993).

    CAS  PubMed  Google Scholar 

  179. Bruijn, L. I. & Cudkowicz, M. Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies. Expert Rev. Neurother. 6, 417–428 (2006).

    CAS  PubMed  Google Scholar 

  180. Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003). Describes an effective therapy in ALS mice based on the delivery of insulin-like growth factor 1 (IGF1) to motor neurons via a retrogradely transported AAV2–IGF1 gene therapy vector.

    CAS  PubMed  Google Scholar 

  181. Raoul, C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Med. 11, 423–428 (2005).

    CAS  PubMed  Google Scholar 

  182. Ralph, G. S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med. 11, 429–433 (2005). References 180 and 181 present compelling evidence that the process of motor neuron cell death in ALS mice can be slowed using inhibitory RNA to silence the offending, mutated SOD1 genes.

    CAS  PubMed  Google Scholar 

  183. Ralph, G. S., Mazarakis, N. D. & Azzouz, M. Therapeutic gene silencing in neurological disorders, using interfering RNA. J. Mol. Med. 83, 413–419 (2005).

    CAS  PubMed  Google Scholar 

  184. Maxwell, M. M., Pasinelli, P., Kazantsev, A. G. & Brown, R. H. Jr. RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc. Natl Acad. Sci. USA 101, 3178–3185 (2004).

    CAS  PubMed  Google Scholar 

  185. Miller, T. M. et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann. Neurol. 57, 773–776 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Smith, R. A. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Wills, A. M. & Brown, R. H. Jr in Amyotrophic Lateral Sclerosis Ch. 14 (eds Brown, R. H. Jr, Swash, M. & Pasinelli, P.) 269–282 (Taylor & Francis, Abingdon, 2006).

    Google Scholar 

  188. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).

    PubMed  Google Scholar 

  189. Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genet. 37, 289–294 (2005).

    PubMed  Google Scholar 

  190. Verhoeven, K. et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am. J. Hum. Genet. 73, 926–932 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nature Genet. 27, 261–262 (2001).

    CAS  PubMed  Google Scholar 

  192. Grandchamp, B. et al. Tissue-specific splicing mutation in acute intermittent porphyria. Proc. Natl Acad. Sci. USA 86, 661–664 (1989).

    CAS  PubMed  Google Scholar 

  193. Goizet, C. et al. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J. Med. Genet. 41, e29 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. DeSandre-Giovannoli, A. et al. Homozygous defects in LMNa, encoding lamin A/C nuclear envelope proteins, cause autosomal recessive neuropathy in human (Charcot-Marie Tooth disorder, Type 2) and mouse. Am. J. Hum. Gen. 70, 726–736 (2002).

    CAS  Google Scholar 

  195. Howard, H. C. et al. The K–Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nature Genet. 32, 384–392 (2002).

    CAS  PubMed  Google Scholar 

  196. Indo, Y. et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nature Genet. 13, 485–488 (1996).

    CAS  PubMed  Google Scholar 

  197. Kihara, H., Fluharty, A. L., O'Brien, J. S. & Fish, C. H. Metachromatic leukodystrophy caused by a partial cerebroside sulfatase. Clin. Genet. 21, 253–261 (1982).

    CAS  PubMed  Google Scholar 

  198. Mihalik, S. J. et al. Identification of PAHX, a Refsum disease gene. Nature Genet. 17, 185–189 (1997).

    CAS  PubMed  Google Scholar 

  199. Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).

    CAS  PubMed  Google Scholar 

  201. La Spada, A. R., Wilson, E. M., Luban, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    CAS  PubMed  Google Scholar 

  202. Yamada, K. et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nature Genet. 35, 318–321 (2003).

    CAS  PubMed  Google Scholar 

  203. Takeda, K. et al. Fine assignment of β-hexosaminidase A α subunit on 15q23–24 by high resolution in situ hybridization. Tohoku J. Exp. Med. 160, 203–211 (1990).

    CAS  PubMed  Google Scholar 

  204. Windpassinger, C. et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet. 36, 271–276 (2004).

    CAS  PubMed  Google Scholar 

  205. Hansen, J. J. et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328–1332 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Reid, E. et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Rainier, S., Chai, J. H., Tokarz, D., Nicholls, R. D. & Fink, J. K. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am. J. Hum. Genet. 73, 967–971 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hazan, J. et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nature Genet. 23, 296–303 (1999).

    CAS  PubMed  Google Scholar 

  209. O'Neill, B. P., Swanson, J. W., Brown, F. R., Griffin, J. W. & Moser, H. W. Familial spastic paraparesis: an adrenoleukodystrophy phenotype? Neurology 35, 1233–1235 (1985).

    CAS  PubMed  Google Scholar 

  210. Simpson, M. A. et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am. J. Hum. Genet. 73, 1147–1156 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    CAS  PubMed  Google Scholar 

  212. Touraine, R. L. et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 66, 1496–1503 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Jouet, M. et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result in mutations in the L1 gene. Nature Genet. 7, 402–407 (1994).

    CAS  PubMed  Google Scholar 

  214. Saugier-Veber, P. et al. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nature Genet. 6, 257–262 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the following for generous support of ALS research: Al-Athel ALS Research Foundation, ALS Association, ALS Therapy Alliance, Angel Fund, Muscular Dystrophy Association, National Institutes of Health (National Institute of Neurological Disorders and Stroke, National Institute on Aging), Pierre L. de Bourgknecht ALS Foundation, Pape Adams Foundation, Project ALS and Spinal Cord Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piera Pasinelli or Robert H. Brown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Human gene defects that cause motor neuron dysfunction. (PDF 222 kb)

Related links

Related links

DATABASES

OMIM

Amyotrophic lateral sclerosis

Huntington's disease

SMARD

FURTHER INFORMATION

ALS Online Database

Glossary

Orphan disease

A condition that affects fewer than 200,000 people nationwide.

Fasciculation

A muscle contraction visible under the skin that represents the spontaneous firing of a single motor neuron and, as a result, of all the muscle fibres it innervates.

Spasticity

Persistent muscle contraction that causes stiffness and interferes with gait, movements and speech.

Bunina bodies

Characteristic proteinacious inclusions in ALS motor neurons.

Ubiquitin

A ubiquitous protein present in all eukaryotes (but absent from prokaryotes). As part of the ubiquitin–proteasome complex, ubiquitin binds and labels proteins to be proteolytically digested and removed from the cell. The ubiquitin–proteasome system is essential for many cellular processes, including cell cycling, signal transduction and the regulation of gene expression.

Guanine nucleotide exchange factor

(GEF). A protein that mediates the exchange of GDP to GTP, catalysed by a GTP-binding protein.

GTPases

A large family of enzymes that bind and hydrolyse GTP.

Endosome

A membrane-bound, intracellular oganelle. Endocytotic vesicles derived from the plasma membrane are actively transported to fuse with endosomes; endosomes also fuse with vesicles of the endoplasmic reticulum that contain newly expressed proteins.

Dynein

A motor protein that converts the chemical energy of ATP into mechanical energy for movement. Dynein transports several cellular cargos along the microtubules.

BCL2

The founding member of a family of apoptosis-regulating proteins. Many BCL2 family members regulate mitochondria-dependent steps in cell death pathways, with some suppressing and others promoting the release of apoptogenic proteins from these organelles.

Apoptosis

A mode of cell death in which the cell triggers its own destruction by activating pre-programmed intracellular suicide machinery.

Caspases

A family of intracellular cysteine endopeptidases that have a key role in mammalian apoptosis. They cleave proteins at specific aspartate residues.

Astrogliosis

Proliferation and ramification of glial cells in response to brain damage.

Microgliosis

Proliferation and activation of microglial cells, which are the primary immune effector cells in the brain.

Kinesins

A class of motor proteins that attach to microtubules and transport vesicles along the tubule.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasinelli, P., Brown, R. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7, 710–723 (2006). https://doi.org/10.1038/nrn1971

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing