Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroscience nanotechnology: progress, opportunities and challenges

Key Points

  • Nanotechnologies are technologies that use engineered materials or devices with a functional organization on the nanometre scale (that is, one billionth of a metre) in at least one dimension, typically ranging from 1 to 100 nanometres. This implies that at least some aspect of the material or device can be manipulated and controlled by physical and/or chemical means at nanometre resolutions, which results in functional properties that are unique to the engineered technology and not shown by its constituent elements. Nanotechnologies are therefore primarily defined by the functional properties that determine how they interact. Although the chemical and/or physical make up of a nanomaterial or device is important in the overall technological process, it is secondary to their engineering and functional properties.

  • Applications of nanotechnology in basic neuroscience include those that investigate molecular, cellular and physiological processes. One example is nanoengineered materials and approaches for promoting neuronal adhesion and growth to help us understand the underlying neurobiology or to support other technologies designed to interact with neurons in vivo (for example, coating of recording or stimulating electrodes). Another is nanoengineered materials and approaches for directly interacting, recording and/or stimulating neurons at a molecular level. A third example is imaging applications using nanotechnology tools, such as chemically functionalized semiconductor quantum dots.

  • Applications of nanotechnology in clinical neuroscience focus on research aimed at limiting and reversing neuropathological disease states. These include nanotechnology approaches designed to support and/or promote the functional regeneration of the nervous system; neuroprotective strategies, in particular those that use fullerene derivatives; and nanotechnology approaches that facilitate the delivery of drugs and small molecules across the blood–brain barrier.

  • The challenges associated with using nanotechnology applications in neuroscience are numerous, but the impact that they can have on understanding how the nervous system works, how it fails in disease and how we can intervene at the molecular level are significant. The capacity to exploit drugs, small molecules, neurotransmitters and neural developmental factors offers the potential to tailor technologies to particular applications. For example, neural developmental factors, such as the cadherins, laminins and bone morphometric protein families, as well as their receptors, can be manipulated in new ways. Nanotechnology offers the ability to take advantage of the functional specificity of these molecules by incorporating them into engineered materials and devices to have highly specific, targeted effects.

  • The main technical challenges that are encountered when using nanotechnology in neuroscience include the need for greater specificity, multiple induced physiological functions and minimal side effects. In vivo there are other unique challenges that must be considered, including the inherent complexity of the CNS and its anatomically restrictive nature.

  • Neuroscientists have a unique role in developing nanotechnologies. Both researchers and clinicians need to identify potential applications of nanotechnology in neuroscience and neurology to maximize their impact. Scientists with other specialties can develop powerful platform technologies and even provide neuroscience-specific examples, but it is only with direct input from and in partnership with neuroscientists that broad neurophysiological and clinical applications can be properly formulated and addressed.

Abstract

Nanotechnologies exploit materials and devices with a functional organization that has been engineered at the nanometre scale. The application of nanotechnology in cell biology and physiology enables targeted interactions at a fundamental molecular level. In neuroscience, this entails specific interactions with neurons and glial cells. Examples of current research include technologies that are designed to better interact with neural cells, advanced molecular imaging technologies, materials and hybrid molecules used in neural regeneration, neuroprotection, and targeted delivery of drugs and small molecules across the blood–brain barrier.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Applications of nanotechnologies in basic neuroscience.
Figure 2: Applications of nanotechnology in clinical neuroscience.
Figure 3: The quantum dot toolbox.
Figure 4: Example of an engineered nanomaterial for neural regeneration.

Similar content being viewed by others

References

  1. Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004).

    CAS  Google Scholar 

  2. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  PubMed  Google Scholar 

  3. Silva, G. A. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg. Neurol. 63, 301–306 (2005).

    PubMed  Google Scholar 

  4. Silva, G. A. Small neuroscience: the nanostructure of the central nervous system and emerging nanotechnology applications. Curr. Nanosci. 3, 225–236 (2005).

    Google Scholar 

  5. Ai, H. et al. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons. J. Neurosci. Methods 128, 1–8 (2003).

    CAS  PubMed  Google Scholar 

  6. Fan, Y. W. et al. Culture of neural cells on silicon wafers with nano-scale surface topograph. J. Neurosci. Methods 120, 17–23 (2002).

    CAS  PubMed  Google Scholar 

  7. Kim, D. H., Abidian, M. & Martin, D. C. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. A 71, 577–585 (2004).

    PubMed  Google Scholar 

  8. Mohammed, J. S., DeCoster, M. A. & McShane, M. J. Micropatterning of nanoengineered surfaces to study neuronal cell attachment in vitro. Biomacromolecules 5, 1745–1755 (2004).

    CAS  PubMed  Google Scholar 

  9. Kramer, S. et al. Preparation of protein gradients through the controlled deposition of protein–nanoparticle conjugates onto functionalized surfaces. J. Am. Chem. Soc. 126, 5388–5395 (2004).

    PubMed  Google Scholar 

  10. Moxon, K. A. et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain–machine interface. IEEE Trans. Biomed. Eng. 51, 881–889 (2004). A good example of electrode modification using nanoengineered materials to improve neuronal adhesion while limiting the effects of contaminating cells to improve the functionality of the electrodes.

    PubMed  Google Scholar 

  11. Shenai, M. B. et al. A novel MEA/AFM platform for measurement of real-time, nanometric morphological alterations of electrically stimulated neuroblastoma cells. IEEE Trans. Nanobioscience 3, 111–117 (2004).

    PubMed  Google Scholar 

  12. Vu, T. Q. et al. Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment. Biomaterials 26, 1895–1903 (2005). An excellent example of a nanoengineered cell-signalling platform technology designed to selectively and controllably stimulate target neurons by immobilizing neurotransmitter molecules on a surface.

    CAS  PubMed  Google Scholar 

  13. Saifuddin, U. et al. Assembly and characterization of biofunctional neurotransmitter-immobilized surfaces for interaction with postsynaptic membrane receptors. J. Biomed. Mater. Res. A 66, 184–191 (2003).

    PubMed  Google Scholar 

  14. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed  Google Scholar 

  15. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003). First major work showing the application of functionalized quantum dots to target neurons in the investigation of a specific neurophysiological process. The authors took advantage of the physical properties of quantum dots to achieve single-particle tracking of glycine receptors.

    CAS  PubMed  Google Scholar 

  16. Howarth, M., Takao, K., Hayashi, Y. & Ting, A. Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  PubMed  Google Scholar 

  17. Fan, H. et al. Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano. Lett. 5, 645–648 (2005).

    CAS  PubMed  Google Scholar 

  18. Vu, T. Q. et al. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano. Lett. 5, 603–607 (2005).

    CAS  PubMed  Google Scholar 

  19. Pathak, S., Cao, E., Davidson, M., Jin, S. -H. & Silva, G. A. Quantum dot applications in neuroscience: new tools for probing neurons and glia. J. Neurosci. (in the press).

  20. Yang, F. et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891–1900 (2004).

    CAS  PubMed  Google Scholar 

  21. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004). First major work describing the application of a nanoengineered material designed specifically for neural regeneration that had multiple, functional properties, including in vitro self-assembly under physiological conditions and preferential differentiation of neurons over astrocytes.

    CAS  PubMed  Google Scholar 

  22. Dugan, L. L. et al. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord. 7, 243–246 (2001).

    PubMed  Google Scholar 

  23. Dugan, L. L., Gabrielsen, J. K., Yu, S. P., Lin, T. S. & Choi, D. W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol. Dis. 3, 129–135 (1996).

    CAS  PubMed  Google Scholar 

  24. Dugan, L. L. et al. Carboxyfullerenes as neuroprotective agents. Proc. Natl Acad. Sci. USA 94, 9434–9439 (1997).

    CAS  PubMed  Google Scholar 

  25. Jin, H. et al. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents. J. Neurosci. Res. 62, 600–607 (2000).

    CAS  PubMed  Google Scholar 

  26. Dugan, L. L. et al. Fullerene-based antioxidants and neurodegenerative disorders. 7, 243–246 (2001). A good example of the application of fullerene-derived nanoparticles intended to protect the CNS from free radical toxicity following injury. This and related research have shown promising initial results in vivo.

  27. Lockman, P. R., Mumper, R. J., Khan, M. A. & Allen, D. D. Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm. 28, 1–13 (2002). Reviews current strategies for delivering drugs and other small molecules across the BBB.

    CAS  PubMed  Google Scholar 

  28. Vinogradov, S. V., Batrakova, E. V. & Kabanov, A. V. Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem. 15, 50–60 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koziara, J. M., Lockman, P. R., Allen, D. D. & Mumper, R. J. In situ blood–brain barrier transport of nanoparticles. Pharm. Res. 20, 1772–1778 (2003).

    CAS  PubMed  Google Scholar 

  30. Olbrich, C., Gessner, A., Kayser, O. & Muller, R. H. Lipid–drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J. Drug Target. 10, 387–396 (2002).

    CAS  PubMed  Google Scholar 

  31. Schroeder, U., Sommerfeld, P., Ulrich, S. & Sabel, B. A. Nanoparticle technology for delivery of drugs across the blood–brain barrier. J. Pharm. Sci. 87, 1305–1307 (1998).

    CAS  PubMed  Google Scholar 

  32. Kreuter, J. et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20, 409–416 (2003).

    CAS  PubMed  Google Scholar 

  33. Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47, 65–81 (2001).

    CAS  PubMed  Google Scholar 

  34. Alyaudtin, R. N. et al. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J. Drug Target. 9, 209–221 (2001).

    CAS  PubMed  Google Scholar 

  35. Brigger, I. et al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol. Exp. Ther. 303, 928–936 (2002).

    CAS  PubMed  Google Scholar 

  36. Garcia-Garcia, E. et al. A relevant in vitro rat model for the evaluation of blood–brain barrier translocation of nanoparticles. Cell. Mol. Life Sci. 62, 1400–1408 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gelperina, S. E. et al. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol. Lett. 126, 131–141 (2002). Describes a practical example of the delivery of the anticancer drug doxorubicin across the BBB in vivo and illustrates the significant potential these technologies have for drug delivery to the CNS.

    CAS  PubMed  Google Scholar 

  38. Kreuter, J. et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target. 10, 317–325 (2002).

    CAS  PubMed  Google Scholar 

  39. Park, T. H. & Shuler, M. L. Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243–253 (2003).

    CAS  PubMed  Google Scholar 

  40. Oliva, A. A. Jr, James, C. D., Kingman, C. E., Craighead, H. G. & Banker, G. A. Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem. Res. 28, 1639–1648 (2003).

    CAS  PubMed  Google Scholar 

  41. Andersson, H. & van den Berg, A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab. Chip 4, 98–103 (2004).

    CAS  PubMed  Google Scholar 

  42. Branch, D. W., Wheeler, B. C., Brewer, G. J. & Leckband, D. E. Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine. IEEE Trans. Biomed. Eng. 47, 290–300 (2000). An excellent example of classical microscale-patterning approaches for controlling the growth and connections of patterned neurons.

    CAS  PubMed  Google Scholar 

  43. Wheeler, B. C., Corey, J. M., Brewer, G. J. & Branch, D. W. Microcontact printing for precise control of nerve cell growth in culture. J. Biomech. Eng. 121, 73–78 (1999).

    CAS  PubMed  Google Scholar 

  44. Chang, J. C., Brewer, G. J. & Wheeler, B. C. Modulation of neural network activity by patterning. Biosens. Bioelectron. 16, 527–533 (2001).

    CAS  PubMed  Google Scholar 

  45. Hansma, H. G., Kasuya, K. & Oroudjev, E. Atomic force microscopy imaging and pulling of nucleic acids. Curr. Opin. Struct. Biol. 14, 380–385 (2004).

    CAS  PubMed  Google Scholar 

  46. Santos, N. C. & Castanho, M. A. An overview of the biophysical applications of atomic force microscopy. Biophys. Chem. 107, 133–149 (2004).

    CAS  PubMed  Google Scholar 

  47. West, J. L. & Halas, N. J. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285–292 (2003).

    CAS  PubMed  Google Scholar 

  48. Murphy, C. J. Optical sensing with quantum dots. Anal. Chem. 74, 520A–526A (2002).

    CAS  PubMed  Google Scholar 

  49. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  PubMed  Google Scholar 

  50. Vanmaekelbergh, D. & Liljeroth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005).

    CAS  PubMed  Google Scholar 

  51. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    CAS  Google Scholar 

  52. Bonneau, S., Cohen, L. D. & Dahan, M. A multiple target approach for single quantum dot tracking. IEEE Int. Symp. Biomed Imaging, Arlington, Virginia, USA, 15–18 April, 664–667 (2004).

  53. Bonneau, S., Dahan, M. & Cohen, L. D. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans. Image Process. 14, 1384–1395 (2005).

    PubMed  Google Scholar 

  54. Arya, H. et al. Quantum dots in bio-imaging: revolution by the small. Biochem. Biophys. Res. Commun. 329, 1173–1177 (2005).

    CAS  PubMed  Google Scholar 

  55. Mansson, A. et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314, 529–534 (2004).

    CAS  PubMed  Google Scholar 

  56. Lidke, D. S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol. 22, 198–203 (2004).

    CAS  Google Scholar 

  57. Jaiswal, J. K., Goldman, E. R., Mattoussi, H. & Simon, S. M. Use of quantum dots for live cell imaging. Nature Methods 1, 73–78 (2004).

    PubMed  Google Scholar 

  58. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    CAS  Google Scholar 

  59. Watson, A., Wu, X. & Bruchez, M. Lighting up cells with quantum dots. Biotechniques 34, 296–300, 302–303 (2003).

    CAS  PubMed  Google Scholar 

  60. Tokumasu, F. & Dvorak, J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J. Microsc. 211, 256–261 (2003).

    CAS  PubMed  Google Scholar 

  61. Ness, J. M., Akhtar, R. S., Latham, C. B. & Roth, K. A. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J. Histochem. Cytochem. 51, 981–987 (2003).

    CAS  PubMed  Google Scholar 

  62. Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21, 47–51 (2003).

    CAS  Google Scholar 

  63. Gao, X. & Nie, S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 21, 371–373 (2003).

    CAS  PubMed  Google Scholar 

  64. Chan, W. C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).

    CAS  PubMed  Google Scholar 

  65. Akerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002).

    CAS  PubMed  Google Scholar 

  66. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Braydich-Stolle, L., Hussain, S., Schlager, J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Toxicol. Sci. 88, 412–419 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lovric, J. et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377–385 (2005).

    PubMed  Google Scholar 

  69. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10, 993–998 (2004).

    CAS  PubMed  Google Scholar 

  70. Stang, F., Fansa, H., Wolf, G. & Keilhoff, G. Collagen nerve conduits — assessment of biocompatibility and axonal regeneration. Biomed. Mater. Eng. 15, 3–12 (2005).

    CAS  PubMed  Google Scholar 

  71. Gamez, E. et al. Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potentials. Cell Transplant. 13, 549–564 (2004).

    PubMed  Google Scholar 

  72. Ma, W. et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol. 190, 276–288 (2004).

    CAS  PubMed  Google Scholar 

  73. Park, K. I., Teng, Y. D. & Snyder, E. Y. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nature Biotechnol. 20, 1111–1117 (2002).

    CAS  Google Scholar 

  74. Balgude, A. P., Yu, X., Szymanski, A. & Bellamkonda, R. V. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22, 1077–1084 (2001).

    CAS  PubMed  Google Scholar 

  75. Dillon, G. P., Yu, X., Sridharan, A., Ranieri, J. P. & Bellamkonda, R. V. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J. Biomater. Sci. Polym. Ed. 9, 1049–1069 (1998).

    CAS  PubMed  Google Scholar 

  76. Katayama, Y. et al. Coil-reinforced hydrogel tubes promote nerve regeneration equivalent to that of nerve autografts. Biomaterials 27, 505–518 (2006).

    CAS  PubMed  Google Scholar 

  77. Tsai, E. C., Dalton, P. D., Shoichet, M. S. & Tator, C. H. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27, 519–533 (2006).

    CAS  PubMed  Google Scholar 

  78. Levesque, S. G., Lim, R. M. & Shoichet, M. S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 26, 7436–7446 (2005).

    CAS  PubMed  Google Scholar 

  79. Yu, T. T. & Shoichet, M. S. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26, 1507–1514 (2005).

    CAS  PubMed  Google Scholar 

  80. Tashiro, K. et al. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264, 16174–16182 (1989).

    CAS  PubMed  Google Scholar 

  81. Nomizu, M. et al. Structure–activity study of a laminin α1 chain active peptide segment Ile-Lys-Val-Ala-Val (IKVAV). FEBS Lett. 365, 227–231 (1995).

    CAS  PubMed  Google Scholar 

  82. Powell, S. K. et al. Neural cell response to multiple novel sites on laminin-1. J. Neurosci. Res. 61, 302–312 (2000).

    CAS  PubMed  Google Scholar 

  83. Tunggal, P., Smyth, N., Paulsson, M. & Ott, M. C. Laminins: structure and genetic regulation. Microsc. Res. Tech. 51, 214–227 (2000).

    CAS  PubMed  Google Scholar 

  84. Blass, J. P. Cerebrometabolic abnormalities in Alzheimer's disease. Neurol. Res. 25, 556–566 (2003).

    CAS  PubMed  Google Scholar 

  85. Gagliardi, R. J. Neuroprotection, excitotoxicity and NMDA antagonists. Arq. Neuropsiquiatr. 58, 583–588 (2000).

    CAS  PubMed  Google Scholar 

  86. Lo, E. H., Dalkara, T. & Moskowitz, M. A. Mechanisms, challenges and opportunities in stroke. Nature Rev. Neurosci. 4, 399–415 (2003).

    CAS  Google Scholar 

  87. Mahadik, S. P. & Mukherjee, S. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr. Res. 19, 1–17 (1996).

    CAS  PubMed  Google Scholar 

  88. Mishra, O. P. & Delivoria-Papadopoulos, M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res. Bull. 48, 233–238 (1999).

    CAS  PubMed  Google Scholar 

  89. Gust, D., Moore, T. A. & Moore, A. L. Photochemistry of supramolecular systems containing C60. J. Photochem. Photobiol. B 58, 63–71 (2000).

    CAS  PubMed  Google Scholar 

  90. Zhang, J., Albelda, M. T., Liu, Y. & Canary, J. W. Chiral nanotechnology. Chirality 17, 404–420 (2005).

    CAS  PubMed  Google Scholar 

  91. Fortina, P., Kricka, L. J., Surrey, S. & Grodzinski, P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol. 23, 168–173 (2005).

    CAS  PubMed  Google Scholar 

  92. Scott, L. T. Methods for the chemical synthesis of fullerenes. Angew. Chem. Int. Ed. Engl. 43, 4994–5007 (2004).

    CAS  PubMed  Google Scholar 

  93. Segura, J. L. & Martin, N. New concepts in tetrathiafulvalene chemistry. Angew. Chem. Int. Ed. Engl. 40, 1372–1409 (2001).

    CAS  PubMed  Google Scholar 

  94. Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P. & Yurchenco, P. D. Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525–31532 (1997).

    CAS  PubMed  Google Scholar 

  95. Hohenester, E. & Engel, J. Domain structure and organisation in extracellular matrix proteins. Matrix Biol. 21, 115–128 (2002).

    CAS  PubMed  Google Scholar 

  96. Giles, J. Size matters when it comes to safety, report warns. Nature 430, 599 (2004).

    CAS  PubMed  Google Scholar 

  97. Giles, J. Nanotechnology: what is there to fear from something so small? Nature 426, 750 (2003).

    CAS  PubMed  Google Scholar 

  98. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99, 5133–5138 (2002).

    CAS  PubMed  Google Scholar 

  100. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Whitaker Foundation, Arlingon, Virginia, USA, and the Stein Clinical Research Institute at the University of California, San Diego, USA. Quantum dots were kindly provided free of charge by Quantum Dot Corporation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

AMPA receptors

NMDA receptors

FURTHER INFORMATION

The National Nanotechnology Initiative

Silva's laboratory

American Academy of Nanomedicine

Nano Science and Technology Institute Nanotechnology to Neuroscience symposium

Glossary

Self-assembly

The self-organization of molecules into supermolecular structures. Self-assembly is triggered by specific chemical or physical variables, such as a change in temperature or concentration, and reflects an energy minimization process.

Bottom-up technologies

Materials or devices engineered from constituent elements such as specific molecules that are organized into higher-order functional structures.

Top-down technologies

Materials or devices that are engineered from a bulk material. The various forms of lithography are examples of top-down engineering approaches.

Lithography

The process of producing patterns in bulk materials. The most common forms of lithography are those associated with the production of semiconductor integrated circuits.

Atomic force microscopy

(AFM). Scanning probe microscopy that uses a sharp probe moving over the surface of a sample to measure topographic spatial information.

Photobleaching

The progressive loss of fluorescence signal intensity due to exposure to light. This can result in a decreased signal-to-noise ratio.

Absorption spectra

The range of wavelengths over which a molecule, such as a fluorophore, or a nanoparticle, such as a quantum dot, are energetically excited.

Emission spectra

The range of wavelengths over which a molecule, such as a fluorophore, or a nanoparticle, such as a quantum dot, emit light.

Synaptic, perisynaptic or extrasynaptic regions

Areas where neurotransmitter receptors cluster at, near, or outside the synapse, respectively.

TrkA receptors

A family of proto-oncogene receptors found throughout the central and peripheral nervous system that bind β-nerve growth factor, which results in downstream signalling effects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, G. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7, 65–74 (2006). https://doi.org/10.1038/nrn1827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing