Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glial specification in the vertebrate neural tube

Key Points

  • Glia comprise 10–20% of cells in the Drosophila nervous system, and more than 90% of cells in the human brain. This implies that glial function is crucial for the increased complexity of neurological function that has emerged during evolution. The principal macroglial subtypes — astrocytes and oligodendrocytes — are derived from the neuroepithelium.

  • Early studies led to the proposal that development of neurons preceded that of glial subtypes in vivo, and that oligodendrocytes in particular developed mostly at postnatal stages. However, it is now clear that the initial specification of spinal cord oligodendrocytes takes place in the embryo.

  • Indications that neurons and glia might be specified by common mechanisms stemmed from the observation that oligodendrocyte precursor cells (OLPs) emerge from a discrete region in the ventral neural tube, rather than from diffuse locations. Marker analysis indicated that OLP development is initiated in the pMN domain of the spinal cord, which also gives rise to motor neurons.

  • A prolonged period of sonic hedgehog (Shh) activity is necessary to ensure normal cell fate acquisition in pMN-oligodendrocyte progenitors, but later stages of OLP maturation are Shh-independent. The Olig1 and Olig2 genes, which probably act downstream of Shh, are required for establishment of the pMN domain.

  • Olig proteins seem to promote oligodendrocyte cell fate while inhibiting astrocyte development. Studies of Olig1 and Olig2 mutants have demonstrated that OLPs and most astrocyte precursors are established in mutually exclusive domains by molecularly independent mechanisms.

  • In the embryonic brain, OLPs develop primarily from ventral regions of the telencephalon. Astrocytes in the brain derive initially from the neuroepithelium through a radial glial intermediate, whereas at later stages they derive from the dorsolateral subventricular zone.

  • The switch from neuronal to glial production in the pMN domain seems to require the Delta–Notch pathway and the transcription factor Sox9, coupled with downregulation of proneural activity.

  • Forced expression of Olig2 and Nkx2.2 is sufficient for ectopic induction of OLPs and production of oligodendrocytes. But in the wild-type embryo, the Olig2–Nkx2.2 interaction seems to be more relevant at later stages for promoting OLP maturation, rather than for the specification of OLPs.

  • Neural specification in vivo is context-dependent and tightly linked to position within the developing CNS, but such anatomical and spatial constraints seem to be less relevant in culture. For example, in neurosphere assays, single neural stem cells from various dorsoventral levels of the CNS can behave as tripotent cells that give rise to neurons, astrocytes and oligodendrocytes.

  • The availability of robust and specific markers for glial lineage development should facilitate assessment of the contributions of glia and their precursors to a range of human neurological disorders, including multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer's disease.

Abstract

Vertebrate macroglial cells have diverse roles in the maintenance of neurological function. This review highlights progress in our understanding of the mechanisms that underlie the specification of precursors for two key macroglial subtypes — oligodendrocytes and astrocytes — in the embryo. These mechanisms are strikingly similar to those that underlie the development of neuronal subtypes, including emergence from localized regions of the neural tube, and involvement of common signalling pathways and downstream transcription factors. The switch from neuronal to glial precursor production can be modelled as a complex interplay between regionally-restricted components and generalized temporal regulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterning of the neural tube generates unique domains for neuronal progenitors.
Figure 2: Restricted origin of oligodendrocyte precursors in the ventral neural tube.
Figure 3: Pattern formation in the neural tube regulates gliogenesis.
Figure 4: Oligodendrocyte and astrocyte precursors are specified in distinct regions of the ventral neural tube.
Figure 5: Complex interactions regulate the neuron–glial switch in the pMN domain.
Figure 6: Sonic hedgehog signalling regulates oligodendrogenesis in vitro through induction of Olig genes.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Histologie du Systeme Nerveux de l'Homme et des Vertebres (Consejo Superior de Investigaciones Cientificas Instituto 'Ramon y Cajal', Madrid, 1952).

    Google Scholar 

  2. Kettenmann, H. & Ransom, B. R. Neuroglia (Oxford Univ. Press, 1995).

    Google Scholar 

  3. Bennett, M. V., Contreras, J. E., Bukauskas, F. F. & Saez, J. C. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26, 610–617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ubink, R., Calza, L. & Hokfelt, T. 'Neuro'-peptides in glia: focus on NPY and galanin. Trends Neurosci. 26, 604–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Newman, E. A. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Barres, B. A. & Barde, Y. Neuronal and glial cell biology. Curr. Opin. Neurobiol. 10, 642–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci. 7, 24–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ling, E. A. & Wong, W. C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7, 9–18 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003). This study describes neuronal progeny of radial glia in the telencephalon and establishes specific roles for this class of progenitors during neurogenesis.

    Article  CAS  PubMed  Google Scholar 

  11. Goldman, S. Glia as neural progenitor cells. Trends Neurosci. 26, 590–596 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Rakic, P. Elusive radial glial cells: historical and evolutionary perspective. Glia 43, 19–32 (2003).

    Article  PubMed  Google Scholar 

  13. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004). The investigators identified a multipotent glial progenitor near the lateral ventricle of humans but not other vertebrates. Unlike SVZ progenitors, there was no evidence of contribution to the rostral migratory stream. This population evidently constitutes a new class of endogenous neural progenitor cell in humans.

    Article  CAS  PubMed  Google Scholar 

  14. Parnavelas, J. G. & Nadarajah, B. Radial glial cells: are they really glia? Neuron 31, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Svendsen, C. N. The amazing astrocyte. Nature 417, 29–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S. C. Defining glial cells during CNS development. Nature Rev. Neurosci. 2, 840–843 (2001).

    Article  CAS  Google Scholar 

  17. Altman, J. A. & Bayer, S. A. Development of the Cerebellar System (CRC, New York, 1997).

    Google Scholar 

  18. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Puelles, L. & Rubenstein, J. L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. McMahon, A. P., Ingham, P. W. & Tabin, C. J. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000). This important study showed that expression of various homeodomain proteins in the ventral neural tube is differentially regulated by Shh signalling. The combinatorial expression of these proteins in turn determines the identity of neuronal progenitors.

    Article  CAS  PubMed  Google Scholar 

  23. Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11, 2477–2488 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Choi, B. H. Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Brain Res. 227, 249–267 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Pringle, N. P. & Richardson, W. D. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533 (1993).

    CAS  PubMed  Google Scholar 

  26. Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ono, K., Bansal, R., Payne, J., Rutishauser, U. & Miller, R. H. Early development and dispersal of oligodendrocyte precursors in the embryonic chick spinal cord. Development 121, 1743–1754 (1995).

    CAS  PubMed  Google Scholar 

  28. Richardson, W. D. et al. Oligodendrocyte lineage and the motor neuron connection. Glia 29, 136–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Richardson, W. D. in Glial Cell Development (eds Jessen, K. R. & Richardson, W. D.) 21–54 (Oxford Univ. Press, 2001).

    Google Scholar 

  30. Miller, R. H. Regulation of oligodendrocyte development in the vertebrate CNS. Prog. Neurobiol. 67, 451–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Orentas, D. M., Hayes, J. E., Dyer, K. L. & Miller, R. H. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126, 2419–2429 (1999).

    CAS  PubMed  Google Scholar 

  32. Alberta, J. A. et al. Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain. Mol. Cell. Neurosci. 18, 434–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Soula, C. et al. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128, 1369–1379 (2001).

    CAS  PubMed  Google Scholar 

  34. Poncet, C. et al. Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech. Dev. 60, 13–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Pringle, N. P. et al. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol. 177, 30–42 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Tsai, H. H. et al. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell 110, 373–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Takebayashi, H. et al. Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Park, H. C., Mehta, A., Richardson, J. S. & Appel, B. olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bai, C. B., Stephen, D. & Joyner, A. L. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev. Cell 6, 103–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, R. et al. Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130, 6221–6231 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002). Analysis of compound Olig1/2 mutant embryos revealed an absence of pMN formation and a ventrally expanded p2 domain. This caused a shift from production of motor neurons and oligodendrocytes to V2 interneurons and astrocytes. So, the pMN and p2 domains represent mutually exclusive regions of oligodendrocyte and astrocyte development, respectively. Olig genes couple neuronal and glial subtype specification, unlike proneural bHLH factors, which control the neuron versus glia decision.

    Article  CAS  PubMed  Google Scholar 

  46. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002). These authors used mutational analysis to show that Olig1 and Olig2 are functionally distinct. Olig2 is regionally required for motor neuron and oligodendrocyte production in the spinal cord, whereas Olig1 function in oligodendrocyte development is only relevant in the brain. Together with Ref. 45, this paper shows the spectrum of phenotypes that are caused by Olig loss-of-function.

    Article  CAS  PubMed  Google Scholar 

  47. Takebayashi, H. et al. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Muhr, J., Andersson, E., Persson, M., Jessell, T. M. & Ericson, J. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001). This study shows how combinatorial interactions of Olig2 and Nkx2.2 promote oligodendrocyte development, and demonstrates the role of Ngn in inhibiting gliogenesis. The data support a model whereby Ngn downregulation is necessary for the neuronal–glial switch.

    Article  CAS  PubMed  Google Scholar 

  51. Edlund, T. & Jessell, T. M. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211–224 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Anderson, D. J. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lillien, L. E. & Raff, M. C. Differentiation signals in the CNS: type-2 astrocyte development in vitro as a model system. Neuron 5, 111–119 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Fulton, B. P., Burne, J. F. & Raff, M. C. Glial cells in the rat optic nerve. The search for the type-2 astrocyte. Ann. NY Acad. Sci. 633, 27–34 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Kondo, T. & Raff, M. C. A role for Noggin in the development of oligodendrocyte precursor cells. Dev. Biol. 267, 242–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Gregori, N., Proschel, C., Noble, M. & Mayer-Proschel, M. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte–type-2 astrocyte progenitor cells and dorsal–ventral differences in GRP cell function. J. Neurosci. 22, 248–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. Glia 30, 105–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Pringle, N. P., Guthrie, S., Lumsden, A. & Richardson, W. D. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Pringle, N. P. et al. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130, 93–102 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Tekki-Kessaris, N. et al. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128, 2545–2554 (2001).

    CAS  PubMed  Google Scholar 

  65. Spassky, N. et al. Sonic hedgehog-dependent emergence of oligodendrocytes in telencephalon: evidence for a source of oligodendrocytes in the olfactory bulb that is independent of PDGFRα signaling. Development 128, 4993–5004 (2001).

    CAS  PubMed  Google Scholar 

  66. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

    CAS  PubMed  Google Scholar 

  67. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Marshall, C. A. & Goldman, J. E. Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. J. Neurosci. 22, 9821–9830 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ivanova, A. et al. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. Neurosci. Res. 73, 581–592 (2003).

    Article  CAS  Google Scholar 

  70. Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Price, J. & Thurlow, L. Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104, 473–482 (1988).

    CAS  PubMed  Google Scholar 

  72. Levison, S. W. and Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  Google Scholar 

  76. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Ross, S. E., Greenberg, M. E. & Stiles, C. D. Basic helix-loop-helix factors in cortical development. Neuron 39, 13–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Sun, Y. et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376 (2001). This interesting study shows that Ngn1 uses distinct transcriptional mechanisms to induce neurogenesis and inhibit the differentiation of neural stem cells into astrocytes. It provides a rationale for how such bHLH proteins might regulate the neuronal–glial switch.

    Article  CAS  PubMed  Google Scholar 

  79. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK–STAT signaling pathway. Science 278, 477–483 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Mabie, P. C., Mehler, M. F. & Kessler, J. A. Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3–Smad1 complex bridged by p300. Science 284, 479–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003). These authors investigated the phenomenon of multipotent neural stem cell capabilities in culture, and they found that both Olig2+ and Olig cells could form multipotent neurospheres. The clonogenic competence to generate neurons, astrocytes and oligodendrocytes entailed a deregulation of dorsoventral identity under in vitro culture conditions, raising the question of whether such tripotent cells actually exist in vivo.

    Article  CAS  PubMed  Google Scholar 

  84. Fukuda, S., Kondo, T., Takebayashi, H. & Taga, T. Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ. 11, 196–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, Y., Liu, Y., Levin, E. M. & Rao, M. S. Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Dev. Dyn. 226, 675–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Sussman, C. R., Davies, J. E. & Miller, R. H. Extracellular and intracellular regulation of oligodendrocyte development: roles of Sonic hedgehog and expression of E proteins. Glia 40, 55–64 (2002).

    Article  PubMed  Google Scholar 

  87. Park, H. C. & Appel, B. Delta-Notch signaling regulates oligodendrocyte specification. Development 130, 3747–3755 (2003). These investigators found that mutations in the zebrafish Notch pathway resulted in failure to produce oligodendrocytes. They argue that Notch signalling preserves subsets of ventral spinal cord precursors during neurogenesis, acting with other temporally and spatially restricted factors to specify them for oligodendrocyte fate.

    Article  CAS  PubMed  Google Scholar 

  88. Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Chambers, C. B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689–702 (2001).

    CAS  PubMed  Google Scholar 

  90. Scheer, N., Groth, A., Hans, S. & Campos-Ortega, J. A. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099–1107 (2001).

    CAS  PubMed  Google Scholar 

  91. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    Article  PubMed  Google Scholar 

  92. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Sauvageot, C. M. & Stiles, C. D. Molecular mechanisms controlling cortical gliogenesis. Curr. Opin. Neurobiol. 12, 244–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Hosoya, T., Takizawa, K., Nitta, K. & Hotta, Y. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025–1036 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Jones, B. W., Fetter, R. D., Tear, G. & Goodman, C. S. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Stolt, C. C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003). Conditional knockout of Sox9 resulted in failure to specify OLPs on schedule and proportionate increases in the numbers of motor neurons. This indicates that Sox9 is needed to promote a proglial specification programme in the pMN domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, T. et al. Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Curr. Biol. 11, 1413–1420 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Qi, Y. et al. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723–2733 (2001). This study describes the requirements for Nkx2.2 function in oligodendrocyte maturation but not the specification of OLPs. The data argue strongly against a p3 origin for OLPs in the neural tube of mice. This is consistent with expression data, which show Nkx2.2 proteins in migrating OLPs.

    CAS  PubMed  Google Scholar 

  101. Fu, H. et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129, 681–693 (2002).

    CAS  PubMed  Google Scholar 

  102. Stolt, C. C. et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16, 165–170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chandran, S. et al. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Kessaris, N., Jamen, F., Rubin, L. L. & Richardson, W. D. Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131, 1289–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Raine, C. S. Stage-specific mechanisms contribute to the multiple sclerosis plaque. NeuroScience News 4, 11–21 (2001).

    Google Scholar 

  106. Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Nicoll, J. A. & Weller, R. O. A new role for astrocytes: β-amyloid homeostasis and degradation. Trends Mol. Med. 9, 281–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Jarjour, A. A. et al. Netrin-1 is a chemorepellant for oligodendrocyte precursor cells in the embryonic spinal cord. J. Neurosci. 23, 3735–3744 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Xu, X. et al. Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes. Mol. Cell. Neurosci. 16, 740–753 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Mi, H. & Barres, B. A. Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J. Neurosci 19, 1049–1061 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Qi, Y., Tan, M., Hui, C. C. & Qiu, M. Gli2 is required for normal Shh signaling and oligodendrocyte development in the spinal cord. Mol. Cell. Neurosci. 23, 440–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Lee, J. et al. Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Dev. Biol. 253, 84–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Armstrong, R. C., Kim, J. G. & Hudson, L. D. Expression of myelin transcription factor I (MyTI), a 'zinc-finger' DNA-binding protein, in developing oligodendrocytes. Glia 14, 303–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Mekki-Dauriac, S. et al. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to R. Bachoo, A. Alvarez-Buylla, M. Freeman, F. Guillemot, K. Ligon, M. Qui, B. Richardson and C. Stiles for comments and stimulating discussions, to F. Guillemot for communication of unpublished results, and to U. DeGirolomi for assistance in translating the Cajal quotation. I would also like to acknowledge the helpful comments of anonymous reviewers, and apologize to those whose work I failed to cite because of the limited scope of the review. Work in my laboratory is supported by the National Institutes of Health, the James S. McDonnell Foundation and the National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASE

Entrez Gene

Dlx2

GFAP

Gli3

Hes1

Irx3

Mash1

Ngn1

Ngn2

Nkx2.2

Olig1

Olig2

PDGFRα

Shh

Smad1

Sox9

Sox10

Stat1

Stat3

FURTHER INFORMATION

Workshop on Astrocyte Function in Health and Disease

Glossary

SALTATORY NERVE CONDUCTION

A process of rapid impulse conduction that is conferred on axons by myelin sheaths in which an action potential 'leaps' from one node of Ranvier (the exposed region of the axons between adjacent myelin sheaths) to the next.

SUBVENTRICULAR ZONE

(SVZ). A layer of cells in the developing brain that is generated by the migration of neuroblasts from the adjoining ventricular zone.

PULSE–CHASE LABELLING STUDIES

Experiments in which addition of a radioactive amino acid (pulse) is followed by non-labelled amino acid (chase), and the production of radioactive proteins from the amino-acid precursors is monitored.

RHOMBIC LIP

A germinal epithelium that is located between the fourth ventricle and the roof plate in the metencephalon.

BONE MORPHOGENETIC PROTEINS

(BMPs). Multifunctional secreted proteins of the transforming growth factor-β superfamily. In the early embryo, they participate in dorsoventral patterning.

ROOF PLATE

The point of fusion of the neural folds, which forms the dorsal-most part of the neural tube.

BASIC HELIX-LOOP-HELIX

(bHLH). A structural motif present in many transcription factors that is characterized by two α-helices separated by a loop. The helices mediate dimerization, and the adjacent basic region is required for DNA binding.

GREEN FLUORESCENT PROTEIN

(GFP). Fluorescent protein cloned from the jellyfish Aequoria victoria. The most frequently used mutant, enhanced GFP, is excited at 488 nm and has an emission maximum at 510 nm.

FLUORESCENCE-ACTIVATED CELL SORTING

(FACS). A method in which dissociated and individual living cells are sorted, in a liquid stream, according to the intensity of fluorescence that they emit as they pass through a laser beam.

GANGLIONIC EMINENCE

The proliferative zone of the ventral telencephalon, which gives rise to the basal ganglia, and also generates some cortical neurons and glia. It consists of lateral, caudal and medial subdivisions.

E-PROTEINS

Transcription factors of the basic helix-loop-helix class, which are closely related to the Daughterless protein of Drosophila.

CRE/LOXP

A site-specific recombination system derived from Escherichia coli bacteriophage P1. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Activation of the Cre-recombinase enzyme catalyses recombination between the loxP sites, leading to excision of the intervening sequence.

NEUROSPHERES

Aggregates of neural precursor cells.

MULTIPLE SCLEROSIS

A neurodegenerative disorder characterized by demyelination of CNS tracts. Symptoms depend on the site of demyelination and include sensory loss, weakness in leg muscles, speech difficulties, loss of coordination and dizziness.

AMYOTROPHIC LATERAL SCLEROSIS

A progressive neurological disease that is associated with the degeneration of central and spinal motor neurons. This neuron loss causes muscles to weaken and waste away, leading to paralysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowitch, D. Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5, 409–419 (2004). https://doi.org/10.1038/nrn1389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing