Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The high-conductance state of neocortical neurons in vivo

A Correction to this article was published on 01 December 2003

Key Points

  • Neocortical neurons in vivo are subjected to intense synaptic bombardment, leading to a 'high-conductance state' that differs markedly from the conditions measured in cortical slices in vitro.

  • During barbiturate anaesthesia, as well as in slices, neuronal activity is greatly reduced compared with states of activated or desynchronized electroencephalogram (EEG) activity, such as in awake animals. During EEG-activated states, intracellular recordings show a depolarized and fluctuating membrane potential, a low input resistance and high levels of spontaneous firing. In slices, cells have a high input resistance, are hyperpolarized and show little spontaneous activity.

  • Active dendritic properties such as the ability to generate and propagate action potentials have important implications for the integration of synaptic inputs. Computational models have been used to investigate these implications for in vivo processing.

  • These models predict the following 'computational principles' for high-conductance states: enhanced responsiveness and gain modulation; equalization of synaptic efficacies; increased temporal resolution; and probabilistic and irregular behaviour. By virtue of these principles, cortical neurons would be tuned to optimally track fine temporal variations in their synaptic inputs despite their stochastic nature.

  • In dynamic-clamp experiments, in vitro electrophysiology is combined with computational modelling to 'recreate' the characteristics of high-conductance states in cortical slices, allowing the effects of the high-conductance state on neuronal responsiveness to be measured directly.

  • Such experiments confirm that synaptic noise enhances neuronal responsiveness and modulates the gain of neurons. They could also be used to test the predictions that it equalizes synaptic efficacies, increases temporal resolution and induces probabilistic behaviour.

Abstract

Intracellular recordings in vivo have shown that neocortical neurons are subjected to an intense synaptic bombardment in intact networks and are in a 'high-conductance' state. In vitro studies have shed light on the complex interplay between the active properties of dendrites and how they convey discrete synaptic inputs to the soma. Computational models have attempted to tie these results together and predicted that high-conductance states profoundly alter the integrative properties of cortical neurons, providing them with a number of computational advantages. Here, we summarize results from these different approaches, with the aim of understanding the integrative properties of neocortical neurons in the intact brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular and electroencephalogram (EEG) recordings during different states of activity.
Figure 2: Conductance measurements during different states of activity.
Figure 3: Dendritic excitability.
Figure 4: Enhanced responsiveness during high-conductance states.
Figure 5: Equalization of synaptic efficacies during high-conductance states.
Figure 6: Sharper temporal resolution during high-conductance states.
Figure 7: Dynamic-clamp experiments in vitro reproduce in vivo high-conductance states.

Similar content being viewed by others

References

  1. deFelipe, J. & Fari–as, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563–607 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, Berlin, 1998).

    Book  Google Scholar 

  3. Evarts, E. V. Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol. 27, 152–171 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Steriade, M. & McCarley, R. W. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).

    Book  Google Scholar 

  5. Matsumura, M., Cope, T. & Fetz, E. E. Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp. Brain Res. 70, 463–469 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Baranyi, A., Szente, M. B. & Woody C. D. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J. Neurophysiol. 69, 1865–1879 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001). First intracellular recordings during different behavioural states. The same neurons are shown to experience consistent changes of membrane parameters across periods of waking, slow-wave sleep and rapid eye movement sleep.

    Article  CAS  PubMed  Google Scholar 

  8. Williams, S. R. & Stuart, G. J. Role of dendritic synapse location in the control of action potential output. Trends Neurosci. 26, 147–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002).

    Article  CAS  Google Scholar 

  10. Häusser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  PubMed  Google Scholar 

  11. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Stuart, G. J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nature Neurosci. 4, 63–71 (2001). Experimental demonstration that EPSPs interact non-linearly with dendritic spikes, resulting in a coincidence detection mechanism.

    Article  CAS  PubMed  Google Scholar 

  14. Barrett, J. N. Motoneuron dendrites: role in synaptic integration. Fed. Proc. 34, 1398–1407 (1975). Theoretical paper investigating synaptic integration where the possible consequences of high-conductance states on integrative properties were mentioned for the first time.

    CAS  PubMed  Google Scholar 

  15. Holmes, W. R. & Woody, C. D. Effects of uniform and non-uniform synaptic 'activation-distributions' on the cable properties of modeled cortical pyramidal neurons. Brain Res. 505, 12–22 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Bernander, O., Douglas, R. J., Martin, K. A. & Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl Acad. Sci. USA 88, 11569–11573 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Destexhe, A. & Paré, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rudolph, M. & Destexhe, A. A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23, 2466–2476 (2003). Theoretical paper showing that cortical neurons in high-conductance states might obey drastically different rules of dendritic integration compared with low-conductance states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brock, L. G., Coombs, J. S. & Eccles, J. C. The recording of potential from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952).

    Article  CAS  Google Scholar 

  20. Woody, C. D. & Gruen, E. Characterization of electrophysiological properties of intracellularly recorded neurons in the neocortex of awake cats: a comparison of the response to injected current in spike overshoot and undershoot neurons. Brain Res. 158, 343–357 (1978). First intracellular study reporting that cortical neurons are in a high-conductance state in awake animals.

    Article  CAS  PubMed  Google Scholar 

  21. Berthier, N. & Woody, C. D. In vivo properties of neurons of the precruciate cortex of cats. Brain Res. Bull. 21, 385–393 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Bindman, L. J., Meyer, T. & Prince, C. A. Comparison of the electrical properties of neocortical neurones in slices in vitro and in the anaesthetized rat. Exp. Brain Res. 69, 489–496 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Paré, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E. J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J. Neurophysiol. 79, 1450–1460 (1998). First characterization of synaptic background activity in vivo ; the first study in which the same neurons were compared between active network states and after total suppression of network activity.

    Article  PubMed  Google Scholar 

  24. Contreras, D., Timofeev, I. & Steriade, M. Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J. Physiol. (Lond.) 494, 251–264 (1996).

    Article  CAS  Google Scholar 

  25. Steriade, M., Amzica, F. & Nunez, A. Cholinergic and noradrenergic modulation of the slow (0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Kasanetz, F., Riquelme, L. A. & Murer, M. G. Disruption of the two-state membrane potential of striatal neurones during cortical desynchronisation in anaesthetised rats. J. Physiol. (Lond.) 543, 577–589 (2002).

    Article  CAS  Google Scholar 

  27. Borg-Graham, L. J., Monier, C. & Frégnac Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hirsch, J. A., Alonso, J. M., Clay Reid, R. & Martinez, L. M. Synaptic integration in striate cortical simple cells. J. Neurosci. 18, 9517–9528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Contreras, D., Destexhe, A. & Steriade, M. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J. Neurophysiol. 78, 335–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Shu, Y., Hasenstaub, A. & McCormick, D. A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Rall, W. Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Llinás, R. R. Electroresponsive properties of dendrites in central neurons. Adv. Neurol. 12, 1–13 (1975). A visionary review paper on the importance of active dendritic properties in central neurons.

    PubMed  Google Scholar 

  34. Segev, I. & Rall, W. Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, S. R. & Stuart, G. J. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J. Neurosci. 20, 1307–1317 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huguenard, J. R., Hamill, O. P. & Prince, D. A. Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. J. Neurophysiol. 59, 778–795 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Johnston, D., Magee, J. C., Colbert, C. M. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Stuart, G. J., Spruston, N. & Häusser, M. (eds) Dendrites (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  40. Bekkers, J. M. Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. (Lond.) 525, 593–609 (2000).

    Article  CAS  Google Scholar 

  41. Kang, J., Huguenard, J. R. & Prince, D. A. Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol. 76, 188–198 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Hamill, O. P., Huguenard, J. R. & Prince, D. A. Patch-clamp studies of voltage gated currents in identified neurons of the rat cerebral cortex. Cereb. Cortex 1, 48–61 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Berger, T., Larkum, M. E. & Lüscher, H. R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Williams, S. R. & Stuart, G. J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Koch, C. Cable theory in neurons, with active, linearized membranes. Biol. Cybern. 50, 15–33 (1984).

    Article  CAS  PubMed  Google Scholar 

  47. Crill, W. E. & Schwindt, P. C. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J. Neurophysiol. 74, 2220–2224 (1995).

    Article  PubMed  Google Scholar 

  48. Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Spencer, W. A. & Kandel, E. R. Electrophysiology of hippocampal neurons. IV. Fast pre-potentials. J. Neurophysiol. 24, 272–285 (1961).

    Article  CAS  PubMed  Google Scholar 

  50. Wong, R. K., Prince, D. A. & Basbaum, A. I. Intradendritic recordings from hippocampal neurons. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benardo, L. S., Masukawa, L. M. & Prince D. A. Electrophysiology of isolated hippocampal pyramidal dendrites. Neuroscience 2, 1614–1622 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Regehr, W., Kehoe, J. S., Ascher, P. & Armstrong, C. Synaptically triggered action potentials in dendrites. Neuron 11, 145–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Andreasen, M. & Lambert J. D. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 483, 421–441 (1995).

    Article  CAS  Google Scholar 

  54. Stuart, G. J. & Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994). First clear-cut evidence for active propagation of action potentials in the dendrites of neocortical neurons.

    Article  CAS  PubMed  Google Scholar 

  55. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Linden, D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Stuart, G., Schiller, J. & Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).

    Article  CAS  Google Scholar 

  59. Schwindt, P. C. & Crill, W. E. Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. J. Neurophysiol. 77, 2466–2483 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Schwindt, P. C. & Crill, W. E. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. J. Neurophysiol. 79, 2432–2446 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Golding, N. L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Wei, D. -S. et al. Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 193, 2272–2275 (2001).

    Article  Google Scholar 

  63. Williams, S. R. & Stuart, G. J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nature Neurosci. 4, 853–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Paré, D., Lebel, E. & Lang, E. J. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78, 1735–1739 (1997).

    Article  PubMed  Google Scholar 

  67. Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tiesinga, P. H. E., José, J. V. & Sejnowski, T. J. Comparison of current-driven and conductance-driven neocortical model neurons with hodgkin-huxley voltage-gated channels. Phys. Rev. E 62, 8413–8419 (2000).

    Article  CAS  Google Scholar 

  69. Destexhe, A., Rudolph, M., Fellous, J. M. & Sejnowski, T. J. Fluctuating conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107, 13–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Lin, J. K., Pawelzik, K., Ernst, U. & Sejnowski, T. J. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons. Network 9, 333–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Diesmann, M., Gewaltig, M. -O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, X. J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunel, N. Persistent activity and the single-cell frequency-current curve in a cortical network model. Network 11, 261–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comp. Neurosci. 8, 183–208 (2000).

    Article  CAS  Google Scholar 

  76. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J. & Steriade, M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Compte, A., Sanchez-Vives, M. V., McCormick, D. A. & Wang, X. J. Cellular and network mechanisms of slow oscillatory activity (1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003).

    Article  PubMed  Google Scholar 

  79. Shelley, M., McLaughlin, D., Shapley, R. & Wielaard, J. States of high conductance in a large-scale model of the visual cortex. J. Comput. Neurosci. 13, 93–109 (2002).

    Article  PubMed  Google Scholar 

  80. London, M., Schreibman, A., Häusser, M., Larkum, M. E. & Segev, I. The information efficacy of a synapse. Nature Neurosci. 5, 332–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Hô, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000). Theoretical study investigating the effect of synaptic noise on neuronal responsiveness. This was the first demonstration of the contrasting effects of conductance and noise with a suggested link to an attentional mechanism.

    Article  PubMed  Google Scholar 

  82. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS. Nature 373, 33–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Doiron, B., Longtin, A., Berman, N. & Maler, L. Subtractive and divisible inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput. 13, 227–248 (2000).

    Article  Google Scholar 

  84. Longtin, A., Doiron, B. & Bulsara, A. R. Noise-induced divisive gain control in neuron models. Biosystems 67,147–156 (2002).

    Article  PubMed  Google Scholar 

  85. Stacey, W. C. & Durand, D. M. Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J. Neurophysiol. 86, 1104–1112 (2001). First experimental evidence that synaptic noise can improve signal detection in central neurons.

    Article  CAS  PubMed  Google Scholar 

  86. Rudolph, M. & Destexhe, A. Do neocortical pyramidal neurons display stochastic resonance? J. Comput. Neurosci. 11, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Segev, I., Rinzel, J. & Shepherd, G. M. The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  88. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neurosci. 3, 895–903 (2000). Experimental and theoretical study of hippocampal pyramidal neurons showing evidence that the conductance of individual excitatory synapses is scaled according to distance from soma, therefore compensating for dendritic cable filtering.

    Article  CAS  PubMed  Google Scholar 

  89. Rudolph, M., Hô, N. & Destexhe, A. Synaptic background activity affects the dynamics of dendritic integration in model neocortical pyramidal neurons. Neurocomputing 38, 327–333 (2001).

    Article  Google Scholar 

  90. Rudolph, M. & Destexhe, A. The discharge variability of neocortical neurons during high-conductance states. Neuroscience 119, 855–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Rudolph, M. & Destexhe, A. Gain modulation and frequency locking under conductance noise. Neurocomputing 52, 907–912 (2003).

    Article  Google Scholar 

  92. Halliday, D. M. Weak, stochastic temporal correlation of large-scale synaptic inputs is a major determinant of neuronal bandwidth. Neural Comput. 12, 693–707 (1999).

    Article  Google Scholar 

  93. Rudolph, M. & Destexhe, A. Correlation detection and resonance in neural systems with distributed noise sources. Phys. Rev. Lett. 86, 3662–3665 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995). First experimental demonstration that pairs of neurons can be linked to behavioural changes by modulating the correlation of their firing, with no change in their average firing rate.

    Article  CAS  PubMed  Google Scholar 

  95. deCharms, R. C. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Rudolph, M. & Destexhe, A. Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J. Comput. Neurosci. 14, 239–251 (2003).

    Article  PubMed  Google Scholar 

  98. Krüger, J. & Becker, J. D. Recognizing the visual stimulus from neuronal discharges. Trends Neurosci. 14, 282–286 (1991).

    Article  PubMed  Google Scholar 

  99. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

    Article  PubMed  Google Scholar 

  100. Harsch, A. & Robinson, P. C. Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J. Neurosci. 20, 6181–6192 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kisley, M. A. & Gerstein, G. L. The continuum of operating modes for a passive model neuron. Neural Comput. 11, 1139–1154 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Marsálek, P., Koch, C. & Maunsell, J. On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl Acad. Sci. USA 94, 735–740 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mel, B. W. Information processing in dendritic trees. Neural Comput. 6, 1031–1085 (1994).

    Article  Google Scholar 

  104. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nature Neurosci. 1, 210–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Sharp, A. A., O'Neil, M. B., Abbott, L. F. & Marder, E. The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16, 389–394 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Robinson, H. P. & Kawai, N. Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49, 157–165 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Fellous, J. M., Rudolph, M., Destexhe, A. & Sejnowski, T. J. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience (in the press).

  111. Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hasenstaub, A. R., Shu, Y. S., Badoual, M., Bal, T. & McCormick, D. A. The effects of recurrent activity on the responsiveness of cortical neurons to synaptic inputs. Soc. Neurosci. Abst. 753.4 (2002).

  113. Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Steriade, M. Ascending control of thalamic and cortical responsiveness. Int. Rev. Neurobiol. 12, 87–144 (1970).

    Article  CAS  PubMed  Google Scholar 

  115. Singer, W., Tretter, F. & Cynader, M. The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex. Brain Res. 102, 71–90 (1976).

    Article  CAS  PubMed  Google Scholar 

  116. Treue, S. & Trujillo, C. M. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997).

    Article  CAS  Google Scholar 

  118. Rudolph, M. & Destexhe, A. Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput. (in the press).

  119. Dean, A. The variability of discharge of simple cells in the cat striate cortex. Exp. Brain Res. 44, 437–440 (1981).

    Article  CAS  PubMed  Google Scholar 

  120. Holt, G. R., Softky, W. R., Koch, C. & Douglas, R. J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Badoual, T. Bal, M. Steriade and I. Timofeev for intracellular recording data. Research supported by the Centre National de la Recherche Scientifique (France), Future and Emerging Technologies (European Union), the Human Frontier Science Program and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe.

Related links

Related links

FURTHER INFORMATION

Laboratory for Computational Neuroscience

Glossary

INPUT RESISTANCE

The voltage change elicited by the injection of current into a cell, divided by the amount of current injected.

LEAK CONDUCTANCE

A constitutively active conductance, the reversal potential of which is called the leak reversal.

DELAYED RECTIFIER K+ CHANNELS

Channels commonly found in axons, the conductance of which changes with a delay after a voltage step. They are important for the generation of action potential bursts, the regulation of pacemaker potentials and other functions.

A-TYPE K+ CHANNELS

This type of channel activates and inactivates very rapidly in response to voltage changes, preventing neurons from responding to fast depolarizations.

TEMPORAL SUMMATION

The way in which non-simultaneous synaptic events add in time. One of the basic elements of synaptic integration.

POWER SPECTRUM

After analysing a waveform with a Fourier transform, its amplitude spectrum is the collection of amplitudes of the sinusoidal components that result from the analysis. The power spectrum is the square of the amplitude spectrum.

COLOURED NOISE

White noise is a signal that covers the entire range of component sound frequencies with equal intensity. In coloured noise, the signal covers a narrow band of frequencies.

INTEGRATE-AND-FIRE MODEL

The simplest model of a spiking neuron that takes into account the dynamics of the synaptic inputs.

STOCHASTIC RESONANCE

The facilitated or optimized response of a non-linear dynamical system to stimuli in the presence of non-vanishing noise, usually expressed as a peak of the signal-to-noise ratio.

CABLE THEORY

Mathematical description of the purely passive spread of electrical current in a nerve fibre. It is conceptually similar to the theory that is needed to understand the properties of long cables.

MEMBRANE TIME CONSTANT

A quantity that depends on the capacitance and resistance of the cell membrane, and which sets a timescale for changes in voltage. A small time constant means that the membrane potential can change rapidly.

SHUNTING INHIBITION

A phenomenon whereby membrane depolarization that is induced by a given current is attenuated because of an enhanced membrane conductance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destexhe, A., Rudolph, M. & Paré, D. The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4, 739–751 (2003). https://doi.org/10.1038/nrn1198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing