Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians

Abstract

Using magnetoencephalography (MEG), we compared the processing of sinusoidal tones in the auditory cortex of 12 non-musicians, 12 professional musicians and 13 amateur musicians. We found neurophysiological and anatomical differences between groups. In professional musicians as compared to non-musicians, the activity evoked in primary auditory cortex 19–30 ms after stimulus onset was 102% larger, and the gray matter volume of the anteromedial portion of Heschl's gyrus was 130% larger. Both quantities were highly correlated with musical aptitude, as measured by psychometric evaluation. These results indicate that both the morphology and neurophysiology of Heschl's gyrus have an essential impact on musical aptitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The auditory stimulus, evoked magnetic fields and cortical anatomy.
Figure 2: Auditory evoked N19m-P30m signals and 3D gray matter surface reconstructions of HG for all subjects aligned in the same order.
Figure 3: Frequency dependence of the primary N19m-P30m and the late N100m dipole moments.
Figure 4: Correlations between early neurophysiological source activity, amHG gray matter volume and musical aptitude.

Similar content being viewed by others

References

  1. Zatorre, R.J. & Peretz, I. The biological foundations of music. Ann. NY Acad. Sci. 930, (2001).

  2. Zatorre, R.J. & Binder, J.R. in Brain Mapping the Systems (eds. Toga, A. W. & Maziotta, J. G.) 365–402 (Academic, San Diego, California, 2000).

    Book  Google Scholar 

  3. Liégeois-Chauvel, C., Peretz, I., Bahaï, M., Laguitton, V. & Chauvel, P. Contribution of different cortical areas in the temporal lobes to music processing. Brain 121, 1853–1867 (1998).

    Article  Google Scholar 

  4. Maess, B., Koelsch, S., Gunter, T.C. & Friederici, A.D. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4, 540–545 (2001).

    Article  CAS  Google Scholar 

  5. Blood, A.J., Zatorre, R.J., Bermudez, P. & Evans, A.C. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382–387 (1999).

    Article  CAS  Google Scholar 

  6. Schiavetto, A., Cortese, F. & Alain, C. Global and local processing of musical sequences: an event-related brain potential study. Neuroreport 10, 2467–2472 (1999).

    Article  CAS  Google Scholar 

  7. Patel, A.D. & Balaban, E. Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat. Neurosci. 4, 839–844 (2001).

    Article  CAS  Google Scholar 

  8. Zatorre, R.J., Evans, A.C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908–1919 (1994).

    Article  CAS  Google Scholar 

  9. Zatorre, R.J., Perry, D.W., Beckett, C.A., Westbury, C.F. & Evans, A.C. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc. Natl. Acad. Sci. USA 95, 3172–3177 (1998).

    Article  CAS  Google Scholar 

  10. Schlaug, G., Jäncke, L., Huang, Y. & Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701 (1995).

    Article  CAS  Google Scholar 

  11. Schlaug, G., Jäncke, L., Huang, Y., Staiger, J.F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    Article  CAS  Google Scholar 

  12. Münte, T., Kohlmetz, C. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).

  13. Altenmüller, E. Electrophysiological correlates of music perception in the human brain. Eur. Arch. Psychiatry Neurol. Sci. 235, 342–354 (1986).

    Article  Google Scholar 

  14. Wayman, J.W., Frisina, R.D. & Walton, J.P. Effects of musical training and absolute pitch ability on event-related activity in response to sine tones. J. Acoust. Soc. Am. 91, 3527–3531 (1992).

    Article  CAS  Google Scholar 

  15. Crummer, G.C., Walton, J.P., Wayman, J.W., Hantz, E.C. & Frisina, R.D. Neural processing of musical timbre by musicians, nonmusicians, and musicians possessing absolute pitch. J. Acoust. Soc. Am. 95, 2720–2727 (1994).

    Article  CAS  Google Scholar 

  16. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport 10, 1309–1313 (1999).

    Article  CAS  Google Scholar 

  17. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–813 (1998).

    Article  CAS  Google Scholar 

  18. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the left hand in string players. Science 270, 305–307 (1995).

    Article  CAS  Google Scholar 

  19. Hirata, Y., Kuriki, S. & Pantev, C. Musicians with absolute pitch show distinct neural activities in the auditory cortex. Neuroreport 10, 999–1002 (1999).

    Article  CAS  Google Scholar 

  20. Liégeois-Chauvel, C., Musolino, A., Badier, J.M., Marquis, P. & Chauvel, P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr. Clin. Neurophysiol. 92, 204–214 (1994).

    Article  Google Scholar 

  21. Scherg, M. & von Cramon, D. Evoked dipole source potentials of the human auditory cortex. Electroencephalogr. Clin. Neurophysiol. 65, 344–360 (1986).

    Article  CAS  Google Scholar 

  22. Rupp, A. et al. Fast temporal interactions in human auditory cortex. Neuroreport 11, 3731–3736 (2000).

    Article  CAS  Google Scholar 

  23. Gutschalk, A. et al. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin. Neurophysiol. 110, 856–868 (1999).

    Article  CAS  Google Scholar 

  24. Braak, H. The pigment architecture of the human temporal lobe. Anat. Embryol. 154, 214–240 (1978).

    Article  Google Scholar 

  25. Galaburda, A. & Sanides, F. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190, 597–610 (1980).

    Article  CAS  Google Scholar 

  26. Rademacher, J., Caviness, V.S., Steinmetz, H. & Galaburda, A.M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex 3, 313–329 (1993).

    Article  CAS  Google Scholar 

  27. Hackett, T.A., Preuss, T.M. & Kaas, J.H. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees and humans. J. Comp. Neurol. 441, 197–222 (2001).

    Article  CAS  Google Scholar 

  28. Rivier, F. & Clarke, S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6, 288–304 (1997).

    Article  CAS  Google Scholar 

  29. Wallace, M.N., Johnston, P.W. & Palmer, A.R. Histochemical identification of cortical areas in the auditory region of the human brain. Exp. Brain Res. 143, 499–508 (2002).

    Article  CAS  Google Scholar 

  30. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 (2001).

    Article  CAS  Google Scholar 

  31. Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13, 684–701 (2001).

    Article  CAS  Google Scholar 

  32. Steinmetz, H. et al. Cerebral asymmetry: MR planimetry of the human planum temporale. J. Comput. Assist. Tomogr. 13, 996–1005 (1989).

    Article  CAS  Google Scholar 

  33. Penhune, V.B., Zatorre, R.J., MacDonald, J.D. & Evans, A.C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).

    Article  CAS  Google Scholar 

  34. Leonard, C.M., Puranik, C., Kuldau, J.M. & Lombardino, L.J. Normal variation in the frequency and location of human auditory cortex. Heschl's gyrus: where is it? Cereb. Cortex 8, 397–406 (1998).

    Article  CAS  Google Scholar 

  35. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    CAS  PubMed  Google Scholar 

  36. Kilgard, P.M. & Merzenich, M.M. Plasticity of temporal information processing in the primary auditory cortex. Nat. Neurosci. 1, 727–731 (1998).

    Article  CAS  Google Scholar 

  37. Gordon, E.E. Learning Sequences in Music (GIA, Chicago, Illinois, 1997).

  38. Scherg, M. in Auditory Evoked Magnetic Fields and Electric Potentials Vol. 6 (eds. Grandori, F., Hoke, M. & Romani, G. L.) 165–193 (Karger, Basel, Switzerland, 1990).

    Google Scholar 

  39. Scherg, M. & von Cramon, D. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62, 32–44 (1985).

    Article  CAS  Google Scholar 

  40. Schneider, P. Source Activity and Tonotopic Organization of the Auditory Cortex in Musicians and Non-musicians. Thesis, Univ. Heidelberg (2000).

  41. Talavage, T.M. et al. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hear. Res. 150, 225–244 (2000).

    Article  CAS  Google Scholar 

  42. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    Article  CAS  Google Scholar 

  43. Zatorre, R. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    Article  CAS  Google Scholar 

  44. Meyer, A. in Music and the Brain (eds. Critchley, M. & Henson, R. A.) 255–281 (Heinemann, London, 1977).

    Book  Google Scholar 

  45. Somogyi, J. Über das morphologische Korrolat der musikalischen Fähigkeiten. Mschr. Psychat. Neurol. 75, 113–169 (1930).

    Google Scholar 

  46. Menning, H., Roberts, L.E. & Pantev, C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11, 817–822 (2000).

    Article  CAS  Google Scholar 

  47. Preis, S., Jäncke, L., Schmitz-Hillebrecht, J. & Steinmetz, H. Child age and planum temporale asymmetry. Brain Cogn. 40, 441–452 (1999).

    Article  CAS  Google Scholar 

  48. Yakovlev, P.I. & Lecours, A.R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–70 (Blackwell, Oxford, 1967).

    Google Scholar 

  49. Monaghan, P., Metcalfe, N.B. & Ruxton, G.D. Does practice shape the brain? Nature 394, 434 (1998).

  50. Thompson, P.M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Berg for helpful comments, K. Sartor and C. Stippich for providing the 3D MRI scans and R. Goebel for his support with the BrainVoyager program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, P., Scherg, M., Dosch, H. et al. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5, 688–694 (2002). https://doi.org/10.1038/nn871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing