Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A thermosensory pathway that controls body temperature

Abstract

Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis—two mechanisms that are fundamental to the nervous system and to our survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: POA-projecting LPB neurons are activated in a cold environment and innervated by dorsal horn (DH) neurons.
Figure 2: Skin cooling-evoked response of single LPB neurons antidromically activated from the POA.
Figure 3: Inhibition of neuronal activity or blockade of ionotropic glutamate receptors in the LPB reverses skin cooling-evoked thermogenic, metabolic and cardiac responses.
Figure 4: Stimulation of LPB neurons evokes thermogenic, metabolic and cardiovascular responses that depend on glutamatergic neurotransmission in the POA.
Figure 5: Skin cooling-evoked thermogenic response does not require a thalamic relay.

Similar content being viewed by others

References

  1. Hammel, H.T. Regulation of internal body temperature. Annu. Rev. Physiol. 30, 641–710 (1968).

    Article  CAS  Google Scholar 

  2. Hensel, H. Thermoreception and temperature regulation. Monogr. Physiol. Soc. 38, 1–321 (1981).

    CAS  PubMed  Google Scholar 

  3. Boulant, J.A. & Gonzalez, R.R. The effect of skin temperature on the hypothalamic control of heat loss and heat production. Brain Res. 120, 367–372 (1977).

    Article  CAS  Google Scholar 

  4. Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci. 85, 18–25 (2000).

    Article  CAS  Google Scholar 

  5. Nakamura, K. & Morrison, S.F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136 (2007).

    Article  CAS  Google Scholar 

  6. Romanovsky, A.A. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R37–R46 (2007).

    Article  CAS  Google Scholar 

  7. Huckaba, C.E., Downey, J.A. & Darling, R.C. A feedback-feedforward mechanism describing the interaction of central and peripheral signals in human thermoregulation. Int. J. Biometeorol. 15, 141–145 (1971).

    Article  CAS  Google Scholar 

  8. Savage, M.V. & Brengelmann, G.L. Control of skin blood flow in the neutral zone of human body temperature regulation. J. Appl. Physiol. 80, 1249–1257 (1996).

    Article  CAS  Google Scholar 

  9. Craig, A.D., Bushnell, M.C., Zhang, E-T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    Article  CAS  Google Scholar 

  10. Craig, A.D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

  11. Sagar, S.M., Sharp, F.R. & Curran, T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328–1331 (1988).

    Article  CAS  Google Scholar 

  12. Saper, C.B. & Loewy, A.D. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197, 291–317 (1980).

    Article  CAS  Google Scholar 

  13. Fulwiler, C.E. & Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Rev. 7, 229–259 (1984).

    Article  Google Scholar 

  14. Krukoff, T.L., Harris, K.H. & Jhamandas, J.H. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull. 30, 163–172 (1993).

    Article  CAS  Google Scholar 

  15. Bester, H., Besson, J-M. & Bernard, J-F. Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 383, 245–281 (1997).

    Article  CAS  Google Scholar 

  16. Lumpkin, E.A. & Caterina, M.J. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007).

    Article  CAS  Google Scholar 

  17. Cechetto, D.F., Standaert, D.G. & Saper, C.B. Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Comp. Neurol. 240, 153–160 (1985).

    Article  CAS  Google Scholar 

  18. Bernard, J.-F., Dallel, R., Raboisson, P., Villanueva, L. & Le Bars, D. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J. Comp. Neurol. 353, 480–505 (1995).

    Article  CAS  Google Scholar 

  19. Feil, K. & Herbert, H. Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J. Comp. Neurol. 353, 506–528 (1995).

    Article  CAS  Google Scholar 

  20. Bester, H., Menendez, L., Besson, J.M. & Bernard, J.F. Spino(trigemino)parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 73, 568–585 (1995).

    Article  CAS  Google Scholar 

  21. Johnston, G.A.R. GABAA receptor pharmacology. Pharmacol. Ther. 69, 173–198 (1996).

    Article  CAS  Google Scholar 

  22. Nakamura, K. et al. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J. Neurosci. 22, 4600–4610 (2002).

    Article  CAS  Google Scholar 

  23. Madden, C.J. & Morrison, S.F. Excitatory amino acid receptor activation in the raphe pallidus area mediates prostaglandin-evoked thermogenesis. Neuroscience 122, 5–15 (2003).

    Article  CAS  Google Scholar 

  24. Zaretskaia, M.V., Zaretsky, D.V. & DiMicco, J.A. Role of the dorsomedial hypothalamus in thermogenesis and tachycardia caused by microinjection of prostaglandin E2 into the preoptic area in anesthetized rats. Neurosci. Lett. 340, 1–4 (2003).

    Article  CAS  Google Scholar 

  25. Madden, C.J. & Morrison, S.F. Excitatory amino acid receptors in the dorsomedial hypothalamus mediate prostaglandin-evoked thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R320–R325 (2004).

    Article  CAS  Google Scholar 

  26. Nakamura, K. Fever-inducing sympathetic neural pathways. J. Therm. Biol. 29, 339–344 (2004).

    Article  CAS  Google Scholar 

  27. Nakamura, K., Matsumura, K., Kobayashi, S. & Kaneko, T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci. Res. 51, 1–8 (2005).

    Article  Google Scholar 

  28. Nakamura, Y. et al. Direct pyrogenic input from prostaglandin EP3 receptor–expressing preoptic neurons to the dorsomedial hypothalamus. Eur. J. Neurosci. 22, 3137–3146 (2005).

    Article  Google Scholar 

  29. Gauriau, C. & Bernard, J.-F. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J. Comp. Neurol. 468, 24–56 (2004).

    Article  Google Scholar 

  30. Zhang, X., Davidson, S. & Giesler, G.J., Jr. Thermally identified subgroups of marginal zone neurons project to distinct regions of the ventral posterior lateral nucleus in rats. J. Neurosci. 26, 5215–5223 (2006).

    Article  CAS  Google Scholar 

  31. Kobayashi, A. & Osaka, T. Involvement of the parabrachial nucleus in thermogenesis induced by environmental cooling in the rat. Pflugers Arch. 446, 760–765 (2003).

    Article  CAS  Google Scholar 

  32. Hylden, J.L.K., Anton, F. & Nahin, R.L. Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28, 27–37 (1989).

    Article  CAS  Google Scholar 

  33. Broman, J. & Ottersen, O.P. Cervicothalamic tract terminals are enriched in glutamate-like immunoreactivity: an electron microscopic double-labeling study in the cat. J. Neurosci. 12, 204–221 (1992).

    Article  CAS  Google Scholar 

  34. Blomqvist, A., Ericson, A.C., Craig, A.D. & Broman, J. Evidence for glutamate as a neurotransmitter in spinothalamic tract terminals in the posterior region of owl monkeys. Exp. Brain Res. 108, 33–44 (1996).

    Article  CAS  Google Scholar 

  35. Bratincsák, A. & Palkovits, M. Evidence that peripheral rather than intracranial thermal signals induce thermoregulation. Neuroscience 135, 525–532 (2005).

    Article  Google Scholar 

  36. Chen, X.-M., Hosono, T., Yoda, T., Fukuda, Y. & Kanosue, K. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J. Physiol. (Lond.) 512, 883–892 (1998).

    Article  CAS  Google Scholar 

  37. Nakamura, K. et al. Immunocytochemical localization of prostaglandin EP3 receptor in the rat hypothalamus. Neurosci. Lett. 260, 117–120 (1999).

    Article  CAS  Google Scholar 

  38. Lazarus, M. et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat. Neurosci. 10, 1131–1133 (2007).

    Article  CAS  Google Scholar 

  39. Bester, H., Chapman, V., Besson, J.-M. & Bernard, J.-F. Physiological properties of the lamina I spinoparabrachial neurons in the rat. J. Neurophysiol. 83, 2239–2259 (2000).

    Article  CAS  Google Scholar 

  40. Craig, A.D. & Dostrovsky, J.O. Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J. Neurophysiol. 86, 856–870 (2001).

    Article  CAS  Google Scholar 

  41. Boulant, J.A. & Hardy, J.D. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. (Lond.) 240, 639–660 (1974).

    Article  CAS  Google Scholar 

  42. Hellon, R.F., Hensel, H. & Schäfer, K. Thermal receptors in the scrotum of the rat. J. Physiol. (Lond.) 248, 349–357 (1975).

    Article  CAS  Google Scholar 

  43. Saper, C.B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002).

    Article  CAS  Google Scholar 

  44. Hori, T., Nakashima, T., Koga, H., Kiyohara, T. & Inoue, T. Convergence of thermal, osmotic and cardiovascular signals on preoptic and anterior hypothalamic neurons in the rat. Brain Res. Bull. 20, 879–885 (1988).

    Article  CAS  Google Scholar 

  45. Morrison, S.F. Central pathways controlling brown adipose tissue thermogenesis. News Physiol. Sci. 19, 67–74 (2004).

    Google Scholar 

  46. Nakamura, K. et al. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J. Neurosci. 24, 5370–5380 (2004).

    Article  CAS  Google Scholar 

  47. Nakamura, K. et al. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J. Comp. Neurol. 421, 543–569 (2000).

    Article  CAS  Google Scholar 

  48. Nakamura, K., Li, Y.-Q., Kaneko, T., Katoh, H. & Negishi, M. Prostaglandin EP3 receptor protein in serotonin and catecholamine cell groups: a double immunofluorescence study in the rat brain. Neuroscience 103, 763–775 (2001).

    Article  CAS  Google Scholar 

  49. Morrison, S.F. & Cao, W.-H. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1763–R1775 (2000).

    Article  CAS  Google Scholar 

  50. Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113–136 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Nakamura for discussion and assistance. This work was supported by US National Institutes of Health (NIH) grants NS40987 and DK57838 to S.F.M. K.N. is a fellow for research abroad supported by the Japan Society for the Promotion of Science. Acquisition of confocal images was supported by NIH instrumentation grant RR016858.

Author information

Authors and Affiliations

Authors

Contributions

K.N. contributed to most of the experimental design, carried out the experiments and analyzed the data. K.N. and S.F.M. discussed the data and wrote the paper.

Corresponding author

Correspondence to Kazuhiro Nakamura.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, K., Morrison, S. A thermosensory pathway that controls body temperature. Nat Neurosci 11, 62–71 (2008). https://doi.org/10.1038/nn2027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing