Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity

Abstract

Functional maturation of GABAergic innervation in the developing visual cortex is regulated by neural activity and sensory inputs and in turn influences the critical period of ocular dominance plasticity. Here we show that polysialic acid (PSA), presented by the neural cell adhesion molecule, has a role in the maturation of GABAergic innervation and ocular dominance plasticity. Concentrations of PSA significantly decline shortly after eye opening in the adolescent mouse visual cortex; this decline is hindered by visual deprivation. The developmental and activity-dependent regulation of PSA expression is inversely correlated with the maturation of GABAergic innervation. Premature removal of PSA in visual cortex results in precocious maturation of perisomatic innervation by basket interneurons, enhanced inhibitory synaptic transmission, and earlier onset of ocular dominance plasticity. The developmental and activity-dependent decline of PSA expression therefore regulates the timing of the maturation of GABAergic inhibition and the onset of ocular dominance plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PSA expression declines shortly after eye opening in mouse visual cortex.
Figure 2: Visual experience downregulates PSA expression in mouse visual cortex.
Figure 3: Premature reduction of PSA expression promotes maturation of perisomatic GABAergic synapses in cortical organotypic cultures.
Figure 4: Premature reduction of PSA expression promotes localization of GAD65 to presynaptic boutons of basket cells.
Figure 5: Premature reduction of PSA expression in visual cortex promotes functional maturation of GABAergic but not glutamatergic synapses.
Figure 6: Premature reduction of PSA expression in visual cortex induces precocious onset of the critical period for ocular dominance plasticity.

Similar content being viewed by others

References

  1. Rothbard, J.B., Brackenbury, R., Cunningham, B.A. & Edelman, G.M. Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J. Biol. Chem. 257, 11064–11069 (1982).

    CAS  PubMed  Google Scholar 

  2. Johnson, C.P., Fujimoto, I., Rutishauser, U. & Leckband, D.E. Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J. Biol. Chem. 280, 137–145 (2005).

    Article  CAS  Google Scholar 

  3. Acheson, A., Sunshine, J.L. & Rutishauser, U. NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J. Cell Biol. 114, 143–153 (1991).

    Article  CAS  Google Scholar 

  4. Fujimoto, I., Bruses, J.L. & Rutishauser, U. Regulation of cell adhesion by polysialic acid. Effects on cadherin, immunoglobulin cell adhesion molecule and integrin function and independence from neural cell adhesion molecule binding or signaling activity. J. Biol. Chem. 276, 31745–31751 (2001).

    Article  CAS  Google Scholar 

  5. Ono, K., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609 (1994).

    Article  CAS  Google Scholar 

  6. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).

    Article  CAS  Google Scholar 

  7. O'Leary, D.D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and 'waiting periods'. Neuron 1, 901–910 (1988).

    Article  CAS  Google Scholar 

  8. Seki, T. & Rutishauser, U. Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J. Neurosci. 18, 3757–3766 (1998).

    Article  CAS  Google Scholar 

  9. Tang, J., Landmesser, L. & Rutishauser, U. Polysialic acid influences specific pathfinding by avian motoneurons. Neuron 8, 1031–1044 (1992).

    Article  CAS  Google Scholar 

  10. Tang, J., Rutishauser, U. & Landmesser, L. Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405–414 (1994).

    Article  CAS  Google Scholar 

  11. Yamamoto, N. et al. Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons. J. Neurosci. 20, 9145–9151 (2000).

    Article  CAS  Google Scholar 

  12. Yin, X., Watanabe, M. & Rutishauser, U. Effect of polysialic acid on the behavior of retinal ganglion cell axons during growth into the optic tract and tectum. Development 121, 3439–3446 (1995).

    CAS  PubMed  Google Scholar 

  13. El Maarouf, A. & Rutishauser, U. Removal of polysialic acid induces aberrant pathways, synaptic vesicle distribution and terminal arborization of retinotectal axons. J. Comp. Neurol. 460, 203–211 (2003).

    Article  CAS  Google Scholar 

  14. Dityatev, A. et al. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 24, 9372–9382 (2004).

    Article  CAS  Google Scholar 

  15. Eckhardt, M. et al. Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20, 5234–5244 (2000).

    Article  CAS  Google Scholar 

  16. Muller, D. et al. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17, 413–422 (1996).

    Article  CAS  Google Scholar 

  17. Theodosis, D.T., Bonhomme, R., Vitiello, S., Rougon, G. & Poulain, D.A. Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J. Neurosci. 19, 10228–10236 (1999).

    Article  CAS  Google Scholar 

  18. Bruses, J.L. & Rutishauser, U. Roles, regulation and mechanism of polysialic acid function during neural development. Biochimie 83, 635–643 (2001).

    Article  CAS  Google Scholar 

  19. Swadlow, H.A. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb. Cortex 13, 25–32 (2003).

    Article  Google Scholar 

  20. Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001).

    Article  CAS  Google Scholar 

  21. Hasenstaub, A. et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005).

    Article  CAS  Google Scholar 

  22. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).

    Article  CAS  Google Scholar 

  23. Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  Google Scholar 

  24. Hanover, J.L., Huang, Z.J., Tonegawa, S. & Stryker, M.P. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci. 19, RC40 (1999).

    Article  CAS  Google Scholar 

  25. Fagiolini, M. & Hensch, T.K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 404, 183–186 (2000).

    Article  CAS  Google Scholar 

  26. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  27. Chattopadhyaya, B. et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci. 24, 9598–9611 (2004).

    Article  CAS  Google Scholar 

  28. Morales, B., Choi, S.Y. & Kirkwood, A. Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22, 8084–8090 (2002).

    Article  CAS  Google Scholar 

  29. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  30. Chattopadhyaya, B. et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54, 889–903 (2007).

    Article  CAS  Google Scholar 

  31. Toki, S. et al. Importance of early lighting conditions in maternal care by dam as well as anxiety and memory later in life of offspring. Eur. J. Neurosci. 25, 815–829 (2007).

    Article  Google Scholar 

  32. Rutishauser, U., Watanabe, M., Silver, J., Troy, F.A. & Vimr, E.R. Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J. Cell Biol. 101, 1842–1849 (1985).

    Article  CAS  Google Scholar 

  33. Klostermann, O. & Wahle, P. Patterns of spontaneous activity and morphology of interneuron types in organotypic cortex and thalamus-cortex cultures. Neuroscience 92, 1243–1259 (1999).

    Article  CAS  Google Scholar 

  34. Di Cristo, G. et al. Subcellular domain–restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat. Neurosci. 7, 1184–1186 (2004).

    Article  CAS  Google Scholar 

  35. Echevarria, D. & Albus, K. Activity-dependent development of spontaneous bioelectric activity in organotypic cultures of rat occipital cortex. Brain Res. Dev. Brain Res. 123, 151–164 (2000).

    Article  CAS  Google Scholar 

  36. Dupuy, S.T. & Houser, C.R. Prominent expression of two forms of glutamate decarboxylase in the embryonic and early postnatal rat hippocampal formation. J. Neurosci. 16, 6919–6932 (1996).

    Article  CAS  Google Scholar 

  37. Tian, N. et al. The role of the synthetic enzyme GAD65 in the control of neuronal γ-aminobutyric acid release. Proc. Natl. Acad. Sci. USA 96, 12911–12916 (1999).

    Article  CAS  Google Scholar 

  38. Asada, H. et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc. Natl. Acad. Sci. USA 94, 6496–6499 (1997).

    Article  CAS  Google Scholar 

  39. Minelli, A., Alonso-Nanclares, L., Edwards, R.H., DeFelipe, J. & Conti, F. Postnatal development of the vesicular GABA transporter in rat cerebral cortex. Neuroscience 117, 337–346 (2003).

    Article  CAS  Google Scholar 

  40. Frenkel, M.Y. & Bear, M.F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004).

    Article  CAS  Google Scholar 

  41. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organization in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  42. Knott, G.W., Quairiaux, C., Genoud, C. & Welker, E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34, 265–273 (2002).

    Article  CAS  Google Scholar 

  43. Kurosawa, N., Yoshida, Y., Kojima, N. & Tsuji, S. Polysialic acid synthase (ST8Sia II/STX) mRNA expression in the developing mouse central nervous system. J. Neurochem. 69, 494–503 (1997).

    Article  CAS  Google Scholar 

  44. Soares, S., von Boxberg, Y., Ravaille-Veron, M., Vincent, J.D. & Nothias, F. Morphofunctional plasticity in the adult hypothalamus induces regulation of polysialic acid–neural cell adhesion molecule through changing activity and expression levels of polysialyltransferases. J. Neurosci. 20, 2551–2557 (2000).

    Article  CAS  Google Scholar 

  45. Angata, K. & Fukuda, M. Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85, 195–206 (2003).

    Article  CAS  Google Scholar 

  46. Bouzioukh, F., Tell, F., Jean, A. & Rougon, G. NMDA receptor and nitric oxide synthase activation regulate polysialylated neural cell adhesion molecule expression in adult brainstem synapses. J. Neurosci. 21, 4721–4730 (2001).

    Article  CAS  Google Scholar 

  47. Bruses, J.L. & Rutishauser, U. Regulation of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium. J. Cell Biol. 140, 1177–1186 (1998).

    Article  CAS  Google Scholar 

  48. Muller, D. et al. Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid–neural cell adhesion molecule-deficient hippocampus. Proc. Natl. Acad. Sci. USA 97, 4315–4320 (2000).

    Article  CAS  Google Scholar 

  49. Angata, K. et al. Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem. 279, 32603–32613 (2004).

    Article  CAS  Google Scholar 

  50. Weinhold, B. et al. Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J. Biol. Chem. 280, 42971–42977 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Wu, E. Putignano, N. Berardi and J. Boehm for technical assistance and discussion; and E. Ruthazer for critically reading the manuscript. This work was supported by the National Institutes of Health (RO1 EY 13564-01). G.D.C. has a National Association for Research in Schizophrenia and Depression (NARSAD) Young Investigator Award founded by the Forrest C. Lattner Foundation. Z.J.H. is a Pew and McKnight Scholar.

Author information

Authors and Affiliations

Authors

Contributions

G.D.C. and Z.J.H. conceived and organized the project and wrote the manuscript. G.D.C. conducted most of the experiments. B.C. contributed to the in vitro and in vivo morphological studies. S.J.K. and Y.F. carried out the mPSC recordings. M.-C.B. performed the western blotting. C.Z.W. contributed to the PSA expression analysis in vivo. U.R. provided endoN and advice. L.M. provided the facility for dark rearing and VEP recording.

Corresponding author

Correspondence to Z Josh Huang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cristo, G., Chattopadhyaya, B., Kuhlman, S. et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10, 1569–1577 (2007). https://doi.org/10.1038/nn2008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2008

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing