Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortical spreading depression causes and coincides with tissue hypoxia

Abstract

Cortical spreading depression (CSD) is a self-propagating wave of cellular depolarization that has been implicated in migraine and in progressive neuronal injury after stroke and head trauma. Using two-photon microscopic NADH imaging and oxygen sensor microelectrodes in live mouse cortex, we find that CSD is linked to severe hypoxia and marked neuronal swelling that can last up to several minutes. Changes in dendritic structures and loss of spines during CSD are comparable to those during anoxic depolarization. Increasing O2 availability shortens the duration of CSD and improves local redox state. Our results indicate that tissue hypoxia associated with CSD is caused by a transient increase in O2 demand exceeding vascular O2 supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSD is associated with marked changes in NADH signal in cortex of adult mice.
Figure 2: The microvasculature determines the pattern of NADH fluorescence changes during CSD.
Figure 3: CSD is associated with a transient increase in local perfusion followed by oligemia.
Figure 4: Severe tissue hypoxia during CSD.
Figure 5: CSD is associated with marked neuronal swelling and distortion of dendritic spines.
Figure 6: The severity of CSD-induced tissue hypoxia is reduced by increasing O2 in breathing mix.

Similar content being viewed by others

References

  1. Leao, A. Spreading depression of activity in cerebral cortex. J. Neurophysiol. 7, 359–390 (1944).

    Article  Google Scholar 

  2. Martins-Ferreira, H., Nedergaard, M. & Nicholson, C. Perspectives on spreading depression. Brain Res. Brain Res. Rev. 32, 215–234 (2000).

    Article  CAS  Google Scholar 

  3. Tian, G.F. et al. An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005).

    Article  CAS  Google Scholar 

  4. Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006).

    Article  CAS  Google Scholar 

  5. Kasischke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R. & Webb, W.W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103 (2004).

    Article  CAS  Google Scholar 

  6. Chance, B., Cohen, F., Jobsis, F. & Schoener, B. Intracellular oxidation-reduction states in vivo. Science 137, 499–508 (1962).

    Article  CAS  Google Scholar 

  7. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 98, 4687–4692 (2001).

    Article  CAS  Google Scholar 

  8. Nedergaard, M. Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol. Scand. 77, 81–101 (1988).

    Article  CAS  Google Scholar 

  9. Mayevsky, A., Zarchin, N. & Friedli, C.M. Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Res. 236, 93–105 (1982).

    Article  CAS  Google Scholar 

  10. Mayevsky, A. & Weiss, H.R. Cerebral blood flow and oxygen consumption in cortical spreading depression. J. Cereb. Blood Flow Metab. 11, 829–836 (1991).

    Article  CAS  Google Scholar 

  11. Mayevsky, A., Lebourdais, S. & Chance, B. The interrelation between brain PO2 and NADH oxidation-reduction state in the gerbil. J. Neurosci. Res. 5, 173–182 (1980).

    Article  CAS  Google Scholar 

  12. Tomita, M. et al. Initial oligemia with capillary flow stop followed by hyperemia during K+-induced cortical spreading depression in rats. J. Cereb. Blood Flow Metab. 25, 742–747 (2005).

    Article  Google Scholar 

  13. Ayata, C. et al. Pronounced hypoperfusion during spreading depression in mouse cortex. J. Cereb. Blood Flow Metab. 24, 1172–1182 (2004).

    Article  Google Scholar 

  14. Hansen, A.J., Quistorff, B. & Gjedde, A. Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression. Acta Physiol. Scand. 109, 1–6 (1980).

    Article  CAS  Google Scholar 

  15. Fabricius, M. & Lauritzen, M. Transient hyperemia succeeds oligemia in the wake of cortical spreading depression. Brain Res. 602, 350–353 (1993).

    Article  CAS  Google Scholar 

  16. Revsbech, N. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989).

    Article  CAS  Google Scholar 

  17. Van Harreveld, A. & Fifkova, E. Glutamate release from the retina during spreading depression. J. Neurobiol. 2, 13–29 (1970).

    Article  CAS  Google Scholar 

  18. Hansen, A.J. Effect of anoxia on ion distribution in the brain. Physiol. Rev. 65, 101–148 (1985).

    Article  CAS  Google Scholar 

  19. Hasbani, M.J., Schlief, M.L., Fisher, D.A. & Goldberg, M.P. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J. Neurosci. 21, 2393–2403 (2001).

    Article  CAS  Google Scholar 

  20. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  21. Oliva, A.A., Jr, Jiang, M., Lam, T., Smith, K.L. & Swann, J.W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    Article  CAS  Google Scholar 

  22. Takano, T. et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc. Natl. Acad. Sci. USA 102, 16466–16471 (2005).

    Article  CAS  Google Scholar 

  23. Capobianco, D.J. & Dodick, D.W. Diagnosis and treatment of cluster headache. Semin. Neurol. 26, 242–259 (2006).

    Article  Google Scholar 

  24. Mayevsky, A. & Sclarksy, D.L. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. Adv. Exp. Med. Biol. 159, 129–141 (1983).

    Article  CAS  Google Scholar 

  25. Schulte, M.L. & Hudetz, A.G. Functional hyperemic response in the rat visual cortex under halothane anesthesia. Neurosci. Lett. 394, 63–68 (2006).

    Article  CAS  Google Scholar 

  26. Hansen, A.J. & Nedergaard, M. Brain ion homeostasis in cerebral ischemia. Neurochem. Pathol. 9, 195–209 (1988).

    CAS  PubMed  Google Scholar 

  27. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  28. Van Harreveld, A. Changes in volume of cortical neuronal elements during asphyxiation. Am. J. Physiol. 101, 233–242 (1957).

    Article  Google Scholar 

  29. Somjen, G.G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096 (2001).

    Article  CAS  Google Scholar 

  30. Nicholson, C., Kraig, R.P., ten Bruggencate, G., Stockle, H. & Steinberg, R. Potassium, calcium, chloride and sodium changes in extracellular space during spreading depression in cerebellum [proceedings]. Arzneimittelforschung 28, 874–875 (1978).

    CAS  PubMed  Google Scholar 

  31. Nedergaard, M. & Hansen, A.J. Characterization of cortical depolarizations evoked in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 13, 568–574 (1993).

    Article  CAS  Google Scholar 

  32. Grafstein, B. Mechanism of spreading cortical depression. J. Neurophysiol. 19, 154–171 (1956).

    Article  CAS  Google Scholar 

  33. Nedergaard, M. & Astrup, J. Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J. Cereb. Blood Flow Metab. 6, 607–615 (1986).

    Article  CAS  Google Scholar 

  34. Umegaki, M. et al. Peri-infarct depolarizations reveal penumbra-like conditions in striatum. J. Neurosci. 25, 1387–1394 (2005).

    Article  CAS  Google Scholar 

  35. Mayevsky, A. et al. Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Res. 740, 268–274 (1996).

    Article  CAS  Google Scholar 

  36. Mayevsky, A., Manor, T., Meilin, S., Doron, A. & Ouaknine, G.E. Real-time multiparametric monitoring of the injured human cerebral cortex–a new approach. Acta Neurochir. Suppl. 71, 78–81 (1998).

    CAS  PubMed  Google Scholar 

  37. Fabricius, M. et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain 129, 778–790 (2006).

    Article  Google Scholar 

  38. Strong, A.J. & Dardis, R. Depolarisation phenomena in traumatic and ischaemic brain injury. Adv. Tech. Stand. Neurosurg. 30, 3–49 (2005).

    Article  CAS  Google Scholar 

  39. Gorji, A. Spreading depression: a review of the clinical relevance. Brain Res. Brain Res. Rev. 38, 33–60 (2001).

    Article  CAS  Google Scholar 

  40. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    Article  CAS  Google Scholar 

  41. Meyer, J.S., Thornby, J., Crawford, K. & Rauch, G.M. Reversible cognitive decline accompanies migraine and cluster headaches. Headache 40, 638–646 (2000).

    Article  CAS  Google Scholar 

  42. Calandre, E.P., Bembibre, J., Arnedo, M.L. & Becerra, D. Cognitive disturbances and regional cerebral blood flow abnormalities in migraine patients: their relationship with the clinical manifestations of the illness. Cephalalgia 22, 291–302 (2002).

    Article  CAS  Google Scholar 

  43. Waldie, K.E., Hausmann, M., Milne, B.J. & Poulton, R. Migraine and cognitive function: a life-course study. Neurology 59, 904–908 (2002).

    Article  Google Scholar 

  44. Riva, D. et al. Cognitive and behavioural effects of migraine in childhood and adolescence. Cephalalgia 26, 596–603 (2006).

    Article  CAS  Google Scholar 

  45. McKendrick, A.M. & Badcock, D.R. Decreased visual field sensitivity measured 1 day, then 1 week, after migraine. Invest. Ophthalmol. Vis. Sci. 45, 1061–1070 (2004).

    Article  Google Scholar 

  46. Shepherd, A.J. Colour vision in migraine: selective deficits for S-cone discriminations. Cephalalgia 25, 412–423 (2005).

    Article  CAS  Google Scholar 

  47. Akin, R., Unay, B., Sarici, S.U., Ulas, U. & Gokcay, E. Evaluation of visual evoked potentials in children with headache. Turk. J. Pediatr. 47, 150–152 (2005).

    PubMed  Google Scholar 

  48. Yenice, O. et al. Assessment of spatial-contrast function and short-wavelength sensitivity deficits in patients with migraine. Eye 21, 218–223 (2007).

    Article  CAS  Google Scholar 

  49. Ayata, C., Jin, H., Kudo, C., Dalkara, T. & Moskowitz, M.A. Suppression of cortical spreading depression in migraine prophylaxis. Ann. Neurol. 59, 652–661 (2006).

    Article  CAS  Google Scholar 

  50. Nimmerjahn, A., Kirchhoff, F., Kerr, J. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants NS30007 and NS38073 from the US National Institutes of Health and the National Institute of Neurological Disorders and Stroke (to M.N.), the New York State Spinal Cord Injury Program, The Dana Foundation and the Philip-Morris Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Takano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Local cerebral blood flow change during CSD in mice anesthetized with urethane + α-chloralose, 2% isoflurane, or 50 mg kg−1 sodium pentobarbital. (PDF 181 kb)

Supplementary Video 1

Imaging of NADH fluorescence change during CSD in mouse cortex at a depth of 50 μm (same experiments as shown in Fig. 1a in pseudocolor). Time-course images were captured with 3-s interval and displayed as 3.5 frames per second. (MOV 4745 kb)

Supplementary Video 2

A small penetrating artery imaged 45 μm below the cortical surface (same as shown in Fig. 3a). The artery first dilated during the passage of a CSD wave followed by a prolonged constriction. The artery was visualized by systemic administration of FITC-dextran. Images were captured at 2-s interval and displayed as 12 frame per second. (MOV 842 kb)

Supplementary Video 3

Simultaneous imaging of NADH fluorescence and blood vessels. NADH signal is in grayscale and blood vessels are shown in green. Both arteries and veins are visible in the field. Images were taken at 50 μm from the surface, and captured at 3-s interval and displayed as 9 frame per second. (MOV 2901 kb)

Supplementary Video 4

Imaging of a YFP-expressing neuron cell body at 125 μm deep during a wave of CSD (same as shown in Fig. 5d). The cell body swelled during CSD. Images were captured at 3-s interval and displayed as 12 frame per second. (MOV 514 kb)

Supplementary Video 5

Imaging of NADH fluorescence change during CSD in mouse anesthetized with 50 mg kg−1 pentobarbital. Different anesthesia did not alter the appearance of NADH pattern. Time-course images were captured with 5-s interval and displayed as 3.5 frames per second. (MOV 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, T., Tian, GF., Peng, W. et al. Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10, 754–762 (2007). https://doi.org/10.1038/nn1902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing