Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vesicular glutamate release from axons in white matter

Abstract

Vesicular release of neurotransmitter is the universal output signal of neurons in the brain. It is generally believed that fast transmitter release is restricted to nerve terminals that contact postsynaptic cells in the gray matter. Here we show in the rat brain that the neurotransmitter glutamate is also released at discrete sites along axons in white matter in the absence of neurons and nerve terminals. The propagation of single action potentials along axons leads to rapid vesicular release of glutamate, which is detected by ionotropic glutamate receptors on local oligodendrocyte precursor cells. Axonal release of glutamate is reliable, involves highly localized calcium microdomain signaling and is strongly calcium cooperative, similar to vesicle fusion at synapses. This axonal transmitter release represents a widespread mechanism for high-fidelity, activity-dependent signaling at the axon-glia interface in white matter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity-dependent glutamate release is detected by OPCs in white matter.
Figure 2: Glutamate release is quantal.
Figure 3: White matter axons contain a pool of releasable vesicles and sustain a high rate of phasic release.
Figure 4: Axonal transmitter release is strongly calcium cooperative.
Figure 5: Glutamate release is highly synchronous, mediated by calcium microdomains and involves membrane recycling.
Figure 6: Unmyelinated axons contain synapse-like vesicles at contact sites with OPCs.
Figure 7: Axonal transmitter release might occur at arbitrary release sites along white matter axons.

Similar content being viewed by others

References

  1. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  2. Rosenmund, C., Rettig, J. & Brose, N. Molecular mechanisms of active zone function. Curr. Opin. Neurobiol. 13, 509–519 (2003).

    Article  CAS  Google Scholar 

  3. Matsui, K. & Jahr, C.E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003).

    Article  CAS  Google Scholar 

  4. Coggan, J.S. et al. Evidence for ectopic neurotransmission at a neuronal synapse. Science 309, 446–451 (2005).

    Article  CAS  Google Scholar 

  5. Barres, B.A., Chun, L.L. & Corey, D.P. Ion channels in vertebrate glia. Annu. Rev. Neurosci. 13, 441–474 (1990).

    Article  CAS  Google Scholar 

  6. Steinhauser, C. & Gallo, V. News on glutamate receptors in glial cells. Trends Neurosci. 19, 339–345 (1996).

    Article  CAS  Google Scholar 

  7. Berger, T., Schnitzer, J. & Kettenmann, H. Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. J. Neurosci. 11, 3008–3024 (1991).

    Article  CAS  Google Scholar 

  8. Baumann, N. & Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927 (2001).

    Article  CAS  Google Scholar 

  9. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  Google Scholar 

  10. Jacobson, S. & Trojanowski, J.Q. The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res. 74, 149–155 (1974).

    Article  CAS  Google Scholar 

  11. Hume, R.I., Dingledine, R. & Heinemann, S.F. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253, 1028–1031 (1991).

    Article  CAS  Google Scholar 

  12. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  Google Scholar 

  13. Washburn, M.S. & Dingledine, R. Block of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J. Pharmacol. Exp. Ther. 278, 669–678 (1996).

    CAS  PubMed  Google Scholar 

  14. Clements, J.D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996).

    Article  CAS  Google Scholar 

  15. Liu, G., Choi, S. & Tsien, R.W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    Article  CAS  Google Scholar 

  16. Raastad, M., Storm, J.F. & Andersen, P. Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur. J. Neurosci. 4, 113–117 (1992).

    Article  Google Scholar 

  17. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–250 (2002).

    Article  CAS  Google Scholar 

  18. Taschenberger, H., Scheuss, V. & Neher, E. Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. J. Physiol. (Lond.) 568, 513–537 (2005).

    Article  CAS  Google Scholar 

  19. Augustine, G.J. How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001).

    Article  CAS  Google Scholar 

  20. Dietrich, D. et al. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39, 483–496 (2003).

    Article  CAS  Google Scholar 

  21. Schneggenburger, R. & Neher, E. Presynaptic calcium and control of vesicle fusion. Curr. Opin. Neurobiol. 15, 266–274 (2005).

    Article  CAS  Google Scholar 

  22. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, USA, 1992).

    Google Scholar 

  23. Neher, E. Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24, 345–357 (1998).

    Article  CAS  Google Scholar 

  24. Mintz, I.M., Sabatini, B.L. & Regehr, W.G. Calcium control of transmitter release at a cerebellar synapse. Neuron 15, 675–688 (1995).

    Article  CAS  Google Scholar 

  25. Barrett, E.F. & Stevens, C.F. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 691–708 (1972).

    Article  CAS  Google Scholar 

  26. Van der Kloot, W. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. J. Physiol. (Lond.) 402, 595–603 (1988).

    Article  CAS  Google Scholar 

  27. Meinrenken, C.J., Borst, J.G. & Sakmann, B. Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J. Physiol. (Lond.) 547, 665–689 (2003).

    CAS  Google Scholar 

  28. Simon, S.M. & Llinas, R.R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  Google Scholar 

  29. Augustine, G.J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  Google Scholar 

  30. Naraghi, M. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22, 255–268 (1997).

    Article  CAS  Google Scholar 

  31. Sabatini, B.L. & Regehr, W.G. Optical measurement of presynaptic calcium currents. Biophys. J. 74, 1549–1563 (1998).

    Article  CAS  Google Scholar 

  32. Pyle, J.L., Kavalali, E.T., Choi, S. & Tsien, R.W. Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24, 803–808 (1999).

    Article  CAS  Google Scholar 

  33. Stanton, P.K. et al. Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide. J. Neurosci. 23, 5936–5944 (2003).

    Article  CAS  Google Scholar 

  34. Spacek, J. & Harris, K.M. Trans-endocytosis via spinules in adult rat hippocampus. J. Neurosci. 24, 4233–4241 (2004).

    Article  CAS  Google Scholar 

  35. Sturrock, R.R. Myelination of the mouse corpus callosum. Neuropathol. Appl. Neurobiol. 6, 415–420 (1980).

    Article  CAS  Google Scholar 

  36. Bjartmar, C., Hildebrand, C. & Loinder, K. Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia 11, 235–244 (1994).

    Article  CAS  Google Scholar 

  37. Trapp, B.D., Nishiyama, A., Cheng, D. & Macklin, W. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J. Cell Biol. 137, 459–468 (1997).

    Article  CAS  Google Scholar 

  38. Riederer, B.M., Berbel, P. & Innocenti, G.M. Neurons in the corpus callosum of the cat during postnatal development. Eur. J. Neurosci. 19, 2039–2046 (2004).

    Article  Google Scholar 

  39. Temple, S. & Raff, M.C. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44, 773–779 (1986).

    Article  CAS  Google Scholar 

  40. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507–518 (2003).

    Article  CAS  Google Scholar 

  41. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    Article  CAS  Google Scholar 

  42. Zhen, M. & Jin, Y. Presynaptic terminal differentiation: transport and assembly. Curr. Opin. Neurobiol. 14, 280–287 (2004).

    Article  CAS  Google Scholar 

  43. Li, S., Mealing, G.A., Morley, P. & Stys, P.K. Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J. Neurosci. 19, RC16 (1999).

    Article  CAS  Google Scholar 

  44. Kriegler, S. & Chiu, S.Y. Calcium signaling of glial cells along mammalian axons. J. Neurosci. 13, 4229–4245 (1993).

    Article  CAS  Google Scholar 

  45. Fields, R.D. & Burnstock, G. Purinergic signalling in neuron-glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006).

    Article  CAS  Google Scholar 

  46. Barres, B.A. & Raff, M.C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    Article  CAS  Google Scholar 

  47. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. USA 93, 9887–9892 (1996).

    Article  CAS  Google Scholar 

  48. Karadottir, R., Cavelier, P., Bergersen, L.H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    Article  CAS  Google Scholar 

  49. Chittajallu, R., Aguirre, A. & Gallo, V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. (Lond.) 561, 109–122 (2004).

    Article  CAS  Google Scholar 

  50. Stricker, C. & Redman, S.J. Quantal analysis based on density estimation. J. Neurosci. Methods 130, 159–171 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Schoch for discussions and comments on the manuscript and for sharing reagents; D. Thal and J. Bedorf for help with electron microscopy; R. Buettner and D. Thal for sharing equipment; B. Stallcup and B. Zalc for providing antibodies. This study was supported by Deutsche Forschungsgemeinschaft (SFB TR3, DI 853/2) and University Clinic Bonn grants (BONFOR). We thank P. Stausberg and K. Neitzert for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.K. performed patch-clamp recordings; E.C.-Z. and D.D. performed and designed electron microscopy investigations; and D.D. carried out Ca2+- and FM1-43 imaging experiments, extracellular recordings, immunohistochemistry and three-dimensional reconstructions. D.D. and M.K. designed experiments, analyzed data and prepared figures. D.D., M.K. and E.C.-Z. wrote the manuscript. D.D. provided financial support.

Corresponding authors

Correspondence to Maria Kukley or Dirk Dietrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Estimation of the size of the readily releasable pool and of the vesicular release probability. (PDF 145 kb)

Supplementary Fig. 2

A fit of a sum of convolved miniature AGC distributions to the distribution of minimal stimulation amplitudes yields probabilities consistent with a simple binomial process. (PDF 139 kb)

Supplementary Fig. 3

Calcium microdomains trigger axonal transmitter release. Estimation of the distance between calcium channels and synaptic vesicles. (PDF 108 kb)

Supplementary Fig. 4

Typical current patterns of callosal OPCs and pyramidal neurons recorded in whole cell voltage clamp mode. (PDF 100 kb)

Supplementary Methods (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat Neurosci 10, 311–320 (2007). https://doi.org/10.1038/nn1850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing