Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin

A Corrigendum to this article was published on 01 February 2008

This article has been updated

Abstract

The structure and function of presynaptic and postsynaptic components of the synapse are highly coordinated. How such coordination is achieved and the molecules involved in this process have not been clarified. Several lines of evidence suggest that presynaptic functionalities are regulated by retrograde mechanisms from the postsynaptic side. We therefore sought postsynaptic mechanisms responsible for trans-synaptic regulation of presynaptic function at excitatory synapses in rat hippocampal CA1 pyramidal neurons. We show here that the postsynaptic complex of scaffolding protein PSD-95 and neuroligin can modulate the release probability of transmitter vesicles at synapse in a retrograde way, resulting in altered presynaptic short-term plasticity. Presynaptic β-neurexin serves as a likely presynaptic mediator of this effect. Our results indicate that trans-synaptic protein-protein interactions can link postsynaptic and presynaptic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of postsynaptic PSD-95 on synaptic transmission.
Figure 2: Postsynaptic PSD-95 regulates release probability in a retrograde way.
Figure 3: Postsynaptic PSD-95 changes presynaptic sensitivity to extracellular Ca2+.
Figure 4: Effect of postsynaptic NLG1 on synaptic transmission.
Figure 5: Interactions between PSD-95 and NLG1 are necessary for both the pre- and postsynaptic effect.
Figure 6: Postsynaptic PSD-95 and NLG regulates the release probability in a retrograde way in CA3–CA3 pyramidal cell synapses.
Figure 7: Reducing presynaptic βNrxn function decreases the release probability.

Similar content being viewed by others

Change history

  • 15 January 2008

    In the version of this article initially published, Figure 5e was duplicated in Figure 5o. The authors regret the error,which has been corrected in the HTML and PDF versions of the article.

References

  1. Liu, G., Choi, S. & Tsien, R.W. Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22, 395–409 (1999).

    Article  CAS  Google Scholar 

  2. Dobrunz, L.E. & Stevens, C.F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  3. Rosenmund, C., Clements, J.D. & Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  Google Scholar 

  4. Conti, R. & Lisman, J. The high variance of AMPA receptor- and NMDA receptor-mediated responses at single hippocampal synapses: evidence for multiquantal release. Proc. Natl. Acad. Sci. USA 100, 4885–4890 (2003).

    Article  CAS  Google Scholar 

  5. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  Google Scholar 

  6. Shepherd, G.M. & Harris, K.M. Three-dimensional structure and composition of CA3->CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    Article  CAS  Google Scholar 

  7. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  8. Sun, H.Y., Lyons, S.A. & Dobrunz, L.E. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J. Physiol. (Lond.) 568, 815–840 (2005).

    Article  CAS  Google Scholar 

  9. Pratt, K.G., Watt, A.J., Griffith, L.C., Nelson, S.B. & Turrigiano, G.G. Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII. Neuron 39, 269–281 (2003).

    Article  CAS  Google Scholar 

  10. Kazama, H., Morimoto-Tanifuji, T. & Nose, A. Postsynaptic activation of calcium/calmodulin-dependent protein kinase II promotes coordinated pre- and postsynaptic maturation of Drosophila neuromuscular junctions. Neuroscience 117, 615–625 (2003).

    Article  CAS  Google Scholar 

  11. Haghighi, A.P. et al. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39, 255–267 (2003).

    Article  CAS  Google Scholar 

  12. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  13. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    Article  CAS  Google Scholar 

  14. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  Google Scholar 

  15. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell 81, 435–443 (1995).

    Article  CAS  Google Scholar 

  16. El-Husseini, A.E., Schnell, E., Chetkovich, D.M., Nicoll, R.A. & Bredt, D.S. PSD-95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    CAS  PubMed  Google Scholar 

  17. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  18. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    Article  CAS  Google Scholar 

  19. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  20. Dean, C. & Dresbach, T. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci. 29, 21–29 (2006).

    Article  CAS  Google Scholar 

  21. Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916–927 (2004).

    Article  CAS  Google Scholar 

  22. Nakagawa, T. et al. Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44, 453–467 (2004).

    Article  CAS  Google Scholar 

  23. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  Google Scholar 

  24. Noguchi, J., Matsuzaki, M., Ellis-Davies, G.C. & Kasai, H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46, 609–622 (2005).

    Article  CAS  Google Scholar 

  25. Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221 (1992).

    Article  CAS  Google Scholar 

  26. Scheuber, A., Miles, R. & Poncer, J.C. Presynaptic Cav2.1 and Cav2.2 differentially influence release dynamics at hippocampal excitatory synapses. J. Neurosci. 24, 10402–10409 (2004).

    Article  CAS  Google Scholar 

  27. Oertner, T.G., Sabatini, B.L., Nimchinsky, E.A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664 (2002).

    Article  CAS  Google Scholar 

  28. Christie, J.M. & Jahr, C.E. Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J. Neurosci. 26, 210–216 (2006).

    Article  CAS  Google Scholar 

  29. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  Google Scholar 

  30. Debanne, D., Gähwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  31. Pavlidis, P. & Madison, D.V. Synaptic transmission in pair recordings from CA3 pyramidal cells in organotypic culture. J. Neurophysiol. 81, 2787–2797 (1999).

    Article  CAS  Google Scholar 

  32. Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  Google Scholar 

  33. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001).

    Article  CAS  Google Scholar 

  34. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  35. Jungling, K. et al. N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. J. Neurosci. 26, 6968–6978 (2006).

    Article  Google Scholar 

  36. Regalado, M.P., Terry-Lorenzo, R.T., Waites, C.L., Garner, C.C. & Malenka, R.C. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J. Neurosci. 26, 2343–2357 (2006).

    Article  CAS  Google Scholar 

  37. Varoqueaux, F. et al. Neuroligins determine synapse maturation and function. Neuron 51, 741–754 (2006).

    Article  CAS  Google Scholar 

  38. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  Google Scholar 

  39. Missler, M. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423, 939–948 (2003).

    Article  CAS  Google Scholar 

  40. Zhang, W. et al. Extracellular domains of α-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. J. Neurosci. 25, 4330–4342 (2005).

    Article  CAS  Google Scholar 

  41. Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P. & Südhof, T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  Google Scholar 

  42. Dekay, J.G., Chang, T.C., Mills, N., Speed, H.E. & Dobrunz, L.E. Responses of excitatory hippocampal synapses to natural stimulus patterns reveal a decrease in short-term facilitation and increase in short-term depression during postnatal development. Hippocampus 16, 66–79 (2006).

    Article  Google Scholar 

  43. Petralia, R.S., Sans, N., Wang, Y.X. & Wenthold, R.J. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol. Cell. Neurosci. 29, 436–452 (2005).

    Article  CAS  Google Scholar 

  44. Song, J.Y., Ichtchenko, K., Südhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  Google Scholar 

  45. Yoshii, A., Sheng, M.H. & Constantine-Paton, M. Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc. Natl. Acad. Sci. USA 100, 1334–1339 (2003).

    Article  CAS  Google Scholar 

  46. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  47. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  48. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  Google Scholar 

  49. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  Google Scholar 

  50. Fifková, E. & Van Harreveld, A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J. Neurocytol. 6, 211–230 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G.-S. Liu, I. Ehrlich, K. Kobayashi and T. Takahashi for advice, and J.C. Howard for editing. Supported by RIKEN and The Ellison Medical Foundation (Y.H.), a Special Postdoctoral Researchers Fellowship from RIKEN (K.F.), the Howard Hughes Medical Institute (M.S.) and the US National Institutes of Health (R01 NS045014 to P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Hayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Confirmation of the efficacy of PSD-95 RNAi construct. (PDF 2306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futai, K., Kim, M., Hashikawa, T. et al. Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin. Nat Neurosci 10, 186–195 (2007). https://doi.org/10.1038/nn1837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing