Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain

Abstract

The ability of the mature mammalian nervous system to continually produce neuronal precursors is of considerable importance, as manipulation of this process might one day permit the replacement of cells lost as a result of injury or disease. In mammals, the anterior subventricular zone (SVZa) region is one of the primary sites of adult neurogenesis. Here we show that doublecortin (DCX), a widely used marker for newly generated neurons, when deleted in mice results in a severe morphological defect in the rostral migratory stream and delayed neuronal migration that is independent of direction or responsiveness to Slit chemorepulsion. DCX is required for nuclear translocation and maintenance of bipolar morphology during migration of these cells. Our data identifies a critical function for DCX in the movement of newly generated neurons in the adult brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abnormally thickened RMS in Dcx−/y mutant mice.
Figure 2: Newly generated neurons do not migrate properly in Dcx−/y mice.
Figure 3: Defect in average velocity reflects 'stutter' in the initiation of migration in slices from Dcx−/y mice.
Figure 4: Decreased migration of neurons exiting the SVZa, due to a defect in nuclear translocation events.
Figure 5: DCX functions in suppression of branching of the primary neurite.

Similar content being viewed by others

References

  1. Abrous, D.N., Koehl, M. & Le Moal, M. Adult neurogenesis: from precursors to network and physiology. Physiol. Rev. 85, 523–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen-Ba-Charvet, K.T. et al. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J. Neurosci. 24, 1497–1506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hack, I., Bancila, M., Loulier, K., Carroll, P. & Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat. Neurosci. 5, 939–945 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23, 703–711 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Anton, E.S. et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat. Neurosci. 7, 1319–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Murase, S. & Horwitz, A.F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22, 3568–3579 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chazal, G., Durbec, P., Jankovski, A., Rougon, G. & Cremer, H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J. Neurosci. 20, 1446–1457 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, H., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16, 735–743 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J. Neurosci. 22, 6106–6113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winner, B., Cooper-Kuhn, C.M., Aigner, R., Winkler, J. & Kuhn, H.G. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur. J. Neurosci. 16, 1681–1689 (2002).

    Article  PubMed  Google Scholar 

  16. des Portes, V. et al. doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum Mol Genet 7, 1063–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Corbo, J.C. et al. Doublecortin Is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 22, 7548–7557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nacher, J., Crespo, C. & McEwen, B.S. Doublecortin expression in the adult rat telencephalon. Eur. J. Neurosci. 14, 629–644 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, J.P. et al. Transient expression of doublecortin during adult neurogenesis. J. Comp. Neurol. 467, 1–10 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kosaka, K. et al. Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci. Res. 23, 73–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Brinon, J.G. et al. Calbindin D-28k-positive neurons in the rat olfactory bulb. An immunohistochemical study. Cell Tissue Res. 269, 289–297 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ward, M., McCann, C., DeWulf, M., Wu, J.Y. & Rao, Y. Distinguishing between directional guidance and motility regulation in neuronal migration. J. Neurosci. 23, 5170–5177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Rio, J.A. et al. MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Curr. Biol. 14, 840–850 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Tsai, L.H. & Gleeson, J.G. Nucleokinesis in neuronal migration. Neuron 46, 383–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Friocourt, G. et al. Doublecortin functions at the extremities of growing neuronal processes. Cereb. Cortex 13, 620–626 (2003).

    Article  PubMed  Google Scholar 

  28. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M. & Hatten, M.E. Par6alpha signaling controls glial-guided neuronal migration. Nat. Neurosci. 7, 1195–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Higginbotham, H., Bielas, S., Tanaka, T. & Gleeson, J.G. Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res. 13, 155–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshihara, S., Omichi, K., Yanazawa, M., Kitamura, K. & Yoshihara, Y. Arx homeobox gene is essential for development of mouse olfactory system. Development 132, 751–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Rakic, P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312 (1971).

    Article  CAS  PubMed  Google Scholar 

  35. Gregory, W.A., Edmondson, J.C., Hatten, M.E. & Mason, C.A. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro. J. Neurosci. 8, 1728–1738 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rivas, R.J. & Hatten, M.E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta, A. et al. Layering defect in p35 deficiency is linked to improper neuronal-glial interaction in radial migration. Nat. Neurosci. 6, 1284–1291 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka, T. et al. Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 41, 215–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ward, M.E., Jiang, H. & Rao, Y. Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration. Mol. Cell. Neurosci. 30, 378–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Deuel, T.A. et al. Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 49, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Koizumi, H., Tanaka, T. & Gleeson, J.G. Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49, 55–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. McManus, M.F., Nasrallah, I.M., Pancoast, M.M., Wynshaw-Boris, A. & Golden, J.A. Lis1 is necessary for normal non-radial migration of inhibitory interneurons. Am. J. Pathol. 165, 775–784 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanada, K., Gupta, A. & Tsai, L.H. Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42, 197–211 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, G. & Rao, Y. Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J. Neurosci. 23, 6651–6659 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F.H. & Verma, I.M. Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Wynshaw-Boris (University of California, San Diego) and C. Walsh (Howard Hughes Medical Institute, Harvard Medical School, Boston) for Dcx knockout mice; M. Hatten and N. Heitz (Rockefeller University, New York; http://www.gensat.org; NIH NS02331), and J. Winkler and L. Aigner (University of Regensburg, Regensburg, Germany) for Dcx::EGFP mice; M. Ward and Y. Rao (Northwestern University, Chicago) for help with the SVZa explant culture system and for the Slit-producing stable HEK293T cell line; S. Tsukita (Japan Science and Technology Corporation, Kyoto, Japan) for the GFP-EB1 clone; N. Woods and R. Marr (Salk Institute, La Jolla, California) for lentiviral vectors and assistance; and J. Isaacson for electrophysiological measurements. This work was funded by the National Institute of Neurological Disorders and Stroke (R01 NS04387 and NS47101). We thank the Neurosciences Microscopy Shared Facility at the University of California, San Diego, for imaging support.

Author information

Authors and Affiliations

Authors

Contributions

H.K. conducted the in vivo experiments. H.K., H.H. and T.P. conducted the in vitro experiments. H.H. prepared the virus and conditioned media. T.T. and B.C.B. provided technical and imaging expertise. All contributed to data analysis and manuscript preparation.

Corresponding author

Correspondence to Joseph G Gleeson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DCX expression in RMS and RMS morphological defects in Dcx null mice (PDF 714 kb)

Supplementary Fig. 2

No significant difference in numbers of calretinin (CR), parvalbumin (PV) or tyrosine hydroxylase (TH)-positive cells in the glomerular layer of Dcx−/y mice. (PDF 762 kb)

Supplementary Fig. 3

No apparent defect in responsiveness of Dcx Dcx−/y neurons to Slit chemorepulsion. (PDF 520 kb)

Supplementary Fig. 4

No apparent defects in centrosome structure and microtubule polymerization dynamics in Dcx−/y (PDF 294 kb)

Supplementary Video 1

Time-lapse imaging of neuronal movement from Dcx+/y; Dcx::EGFP. (MOV 1291 kb)

Supplementary Video 2

Time-lapse imaging of neuronal movement from Dcx−/y; Dcx::EGFP. (MOV 1582 kb)

Supplementary Video 3

Time-lapse DIC and fluorescent imaging of Dcx+/y; m⃗actin::Cetn2-EGFP isolated neurons in gel matrix. (MOV 1063 kb)

Supplementary Video 4

Time-lapse DIC and fluorescent imaging of Dcx−/y; m⃗actin::Cetn2-EGFP isolated neurons in gel matrix. (MOV 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, H., Higginbotham, H., Poon, T. et al. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain. Nat Neurosci 9, 779–786 (2006). https://doi.org/10.1038/nn1704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing