Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microstimulation of macaque area LIP affects decision-making in a motion discrimination task

Abstract

A central goal of cognitive neuroscience is to elucidate the neural mechanisms underlying decision-making. Recent physiological studies suggest that neurons in association areas may be involved in this process. To test this, we measured the effects of electrical microstimulation in the lateral intraparietal area (LIP) while monkeys performed a reaction-time motion discrimination task with a saccadic response. In each experiment, we identified a cluster of LIP cells with overlapping response fields (RFs) and sustained activity during memory-guided saccades. Microstimulation of this cluster caused an increase in the proportion of choices toward the RF of the stimulated neurons. Choices toward the stimulated RF were faster with microstimulation, while choices in the opposite direction were slower. Microstimulation never directly evoked saccades, nor did it change reaction times in a simple saccade task. These results demonstrate that the discharge of LIP neurons is causally related to decision formation in the discrimination task.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Microstimulation in LIP affects both decisions and reaction times.
Figure 3: Effects of LIP microstimulation are evident during individual experiments.
Figure 4: Microstimulation in MT and LIP have different effects on decisions and reaction times.
Figure 5: Microstimulation of LIP and MT affect the decision process at different points.
Figure 6: Predicted magnitude of effects of LIP microstimulation on choice and reaction time.

Similar content being viewed by others

References

  1. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    Article  CAS  Google Scholar 

  2. Schall, J. & Thompson, K. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  Google Scholar 

  3. Glimcher, P.W. The neurobiology of visual-saccadic decision making. Annu. Rev. Neurosci. 26, 133–179 (2003).

    Article  CAS  Google Scholar 

  4. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, 203–218 (2003).

    Article  CAS  Google Scholar 

  5. Pasternak, T. & Merigan, W.H. Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb. Cortex 4, 247–259 (1994).

    Article  CAS  Google Scholar 

  6. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  7. Salzman, C.D., Murasugi, C.M., Britten, K.H. & Newsome, W.T. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  Google Scholar 

  8. Newsome, W.T. & Paré, E.B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  9. Gold, J.I. & Shadlen, M.N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    Article  CAS  Google Scholar 

  10. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  Google Scholar 

  11. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  12. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  13. Andersen, R.A. & Buneo, C.A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    Article  CAS  Google Scholar 

  14. Born, R.T. & Bradley, D.C. Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005).

    Article  CAS  Google Scholar 

  15. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  16. Ditterich, J., Mazurek, M. & Shadlen, M.N. Microstimulation of visual cortex affects the speed of perceptual decisions. Nat. Neurosci. 6, 891–898 (2003).

    Article  CAS  Google Scholar 

  17. Ratcliff, R. & Rouder, J.N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

    Article  Google Scholar 

  18. Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  Google Scholar 

  19. Holmes, P. et al. Optimal decisions: from neural spikes, through stochastic differential equations, to behavior. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science 88, 2496–2503 (2005).

    Article  Google Scholar 

  20. Ratcliff, R. & Smith, P. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111, 333–367 (2004).

    Article  Google Scholar 

  21. Link, S.W. The Wave Theory of Difference and Similarity (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1992).

    Google Scholar 

  22. Palmer, J., Huk, A.C. & Shadlen, M.N. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5, 376–404 (2005).

    Article  Google Scholar 

  23. Bisley, J.W., Zaksas, D. & Pasternak, T. Microstimulation of cortical area MT affects performance on a visual working memory task. J. Neurophysiol. 85, 187–196 (2001).

    Article  CAS  Google Scholar 

  24. Gottlieb, J. & Goldberg, M.E. Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nat. Neurosci. 2, 906–912 (1999).

    Article  CAS  Google Scholar 

  25. Wardak, C., Olivier, E. & Duhamel, J.R. A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron 42, 501–508 (2004).

    Article  CAS  Google Scholar 

  26. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  27. Gottlieb, J.P., Kusunoki, M. & Goldberg, M.E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    Article  CAS  Google Scholar 

  28. Platt, M.L. & Glimcher, P.W. Responses of intraparietal neurons to saccadic targets and visual distractors. J. Neurophysiol. 78, 1574–1589 (1997).

    Article  CAS  Google Scholar 

  29. Pare, M. & Wurtz, R.H. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. J. Neurophysiol. 85, 2545–2562 (2001).

    Article  CAS  Google Scholar 

  30. Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  Google Scholar 

  31. Schiller, P.H. & Tehovnik, E.J. Look and see: how the brain moves your eyes about. Prog. Brain Res. 134, 127–142 (2001).

    Article  CAS  Google Scholar 

  32. Burman, D.D. & Bruce, C.J. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. J. Neurophysiol. 77, 2252–2267 (1997).

    Article  CAS  Google Scholar 

  33. Opris, I., Barborica, A. & Ferrera, V.P. Effects of electrical microstimulation in monkey frontal eye field on saccades to remembered targets. Vision Res. 45, 3414–3429 (2005).

    Article  Google Scholar 

  34. Romo, R., Hernandez, A. & Zainos, A. Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41, 165–173 (2004).

    Article  CAS  Google Scholar 

  35. Kim, J.-N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  Google Scholar 

  36. Horwitz, G.D. & Newsome, W.T. Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. J. Neurophysiol. 86, 2543–2558 (2001).

    Article  CAS  Google Scholar 

  37. Huk, A.C. & Shadlen, M.N. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).

    Article  CAS  Google Scholar 

  38. Carello, C.D. & Krauzlis, R.J. Manipulating intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43, 575–583 (2004).

    Article  CAS  Google Scholar 

  39. Eskandar, E.N. & Assad, J.A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosci. 2, 88–93 (1999).

    Article  CAS  Google Scholar 

  40. Leon, M.I. & Shadlen, M.N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  Google Scholar 

  41. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).

    Article  CAS  Google Scholar 

  42. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  Google Scholar 

  43. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 443–446 (1997).

    Article  Google Scholar 

  44. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  Google Scholar 

  45. Van Essen, D.C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).

    Article  CAS  Google Scholar 

  46. Tehovnik, E.J. Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Methods 65, 1–17 (1996).

    Article  CAS  Google Scholar 

  47. Butovas, S. & Schwarz, C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophysiol. 90, 3024–3039 (2003).

    Article  Google Scholar 

  48. Thier, P. & Andersen, R.A. Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. J. Neurophysiol. 80, 1713–1735 (1998).

    Article  CAS  Google Scholar 

  49. Smith, P. A note on the distribution of response times for a random walk with gaussian increments. J. Math. Psychol. 34, 445–459 (1990).

    Article  Google Scholar 

  50. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. Numerical Recipes in C 735 (Cambridge University Press, Cambridge, UK, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank A. Huk, M. Mazurek and W. Newsome for helpful discussion on all aspects of this project; S. Allred, A. Churchland, R. Kiani, J. Palmer and T. Yang for comments on this manuscript and useful suggestions; and M. Mihali, J. McNulty and V.K. Skypeck for technical assistance. This study was supported by the Howard Hughes Medical Institute (HHMI) and the National Eye Institute. T.D.H. is also supported by an HHMI predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N Shadlen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanks, T., Ditterich, J. & Shadlen, M. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat Neurosci 9, 682–689 (2006). https://doi.org/10.1038/nn1683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing