Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hedgehog signaling from the ZLI regulates diencephalic regional identity

Abstract

The zona limitans intrathalamica (ZLI), a narrow compartment in the vertebrate forebrain that bisects the diencephalon transversely, expresses the secreted factor sonic hedgehog (Shh). Because genetic disruption of Shh in mouse causes severe early developmental defects, this strategy has not been useful in identifying a ZLI-specific role for this gene. To modulate Shh signaling in a spatiotemporally restricted manner, we carried out gain- and loss-of-function experiments in chick embryos using in ovo electroporation and found that Shh signaling is required for region-specific gene expression in thalamus and prethalamus, the major diencephalic brain areas flanking the ZLI. We further show that differential competence of thalamic and prethalamic primordia in responding to Shh signaling is regulated by the transcription factor Irx3. We show that, through the release of Shh, the ZLI functions as a local signaling center that regulates the acquisition of identity for these important diencephalic regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of embryonic chick brain.
Figure 2: Gene expression in the diencephalon at definitive ZLI stages.
Figure 3: Overexpression of Shh results in expansion of thalamus and prethalamus.
Figure 4: A requirement for Shh signaling in prethalamus and thalamus.
Figure 5: Shh signaling is required for ZLI-specific gene expression.
Figure 6: A 'dorsal truncation' of the ZLI results in a reduced Gbx2 expression domain.
Figure 7: Ectopic Irx3 induces thalamic gene expression in the prethalamus.
Figure 8: Ectopic Irx3 induces thalamic gene expression in the prethalamus autonomously and in a Shh-dependent manner.

Similar content being viewed by others

References

  1. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Jessell, T.M. & Sanes, J.R. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Pasini, A. & Wilkinson, D.G. Stabilizing the regionalisation of the developing vertebrate central nervous system. Bioessays 24, 427–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Echevarría, D., Vieira, C., Gimeno, L. & Martínez, S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res. Brain Res. Rev. 43, 179–191 (2003).

    Article  PubMed  Google Scholar 

  5. Figdor, M.C. & Stern, C.D. Segmental origin of embryonic diencephalon. Nature 363, 630–634 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Rubenstein, J.L., Martinez, S., Shimamura, K. & Puelles, L. The embryonic vertebrate forebrain: the prosomeric model. Science 266, 578–580 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Puelles, L. & Rubenstein, J.L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Larsen, C.W., Zeltser, L.M. & Lumsden, A. Boundary formation and compartition in the avian diencephalon. J. Neurosci. 21, 4699–4711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeltser, L.M., Larsen, C.W. & Lumsden, A. A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat. Neurosci. 4, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Lopez, R., Vieira, C., Echevarria, D. & Martinez, S. Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos. Dev. Biol. 268, 514–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Shimamura, K., Hartigan, D.J., Martinez, S., Puelles, L. & Rubenstein, J.L. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    CAS  PubMed  Google Scholar 

  12. Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129, 83–93 (2002).

    CAS  PubMed  Google Scholar 

  13. Braun, M.M., Etheridge, A., Bernard, A., Robertson, C.P. & Roelink, H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 130, 5579–5587 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Goodrich, L.V. & Scott, M.P. Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Briscoe, J., Pierani, A., Jessell, T.M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ericson, J. et al. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dale, J.K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Agarwala, S., Sanders, T.A. & Ragsdale, C.W. Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291, 2147–2150 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Britto, J., Tannahill, D. & Keynes, R. A critical role for sonic hedgehog signaling in the early expansion of the developing brain. Nat. Neurosci. 5, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Ruiz, I., Altaba, A., Palma, V. & Dahmane, N. Hedgehog-Gli signaling and the growth of the brain. Nat. Rev. Neurosci. 3, 24–33 (2002).

    Article  Google Scholar 

  24. Charron, F., Stein, E., Jeong, J., McMahon, A.P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Machold, R. et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39, 937–950 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Thibert, C. et al. Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301, 843–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Muenke, M. & Beachy, P.A. Genetics of ventral forebrain development and holoprosencephaly. Curr. Opin. Genet. Dev. 10, 262–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ishibashi, M. & McMahon, A.P. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 129, 4807–4819 (2002).

    CAS  PubMed  Google Scholar 

  30. Nakamura, H., Watanabe, Y. & Funahashi, J. Misexpression of genes in brain vesicles by in ovo electroporation. Dev. Growth Differ. 42, 199–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kitamura, K., Miura, H., Yanazawa, M., Miyashita, T. & Kato, K. Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech. Dev. 67, 83–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Marigo, V., Davey, R.A., Zuo, Y., Cunningham, J.M. & Tabin, C.J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Ingham, P.W. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caspary, T. et al. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr. Biol. 12, 1628–1632 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kawakami, T. et al. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129, 5753–5765 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ma, Y. et al. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111, 63–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Hashimoto-Torii, K. et al. Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mech. Dev. 120, 1097–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Niss, K. & Leutz, A. Expression of the homeobox gene GBX2 during chicken development. Mech. Dev. 76, 151–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Stoykova, A. & Gruss, P. Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Briscoe, J., Chen, Y., Jessell, T.M. & Struhl, G. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol. Cell 7, 1279–1291 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Gomez-Skarmeta, J.L. & Modolell, J. Iroquois genes: genomic organization and function in vertebrate neural development. Curr. Opin. Genet. Dev. 12, 403–408 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto, K. et al. The prepattern transcription factor Irx2, a target of the FGF8/MAPK cascade, is involved in cerebellum formation. Nat. Neurosci. 7, 605–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Hargrave, M. et al. The HMG box transcription factor gene Sox14 marks a novel subset of ventral interneurons and is regulated by sonic hedgehog. Dev. Biol. 219, 142–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, A. & Joyner, A.L. Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rhinn, M. & Brand, M. The midbrain-hindbrain boundary organizer. Curr. Opin. Neurobiol. 11, 34–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Wurst, W. & Bally-Cuif, L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat. Rev. Neurosci. 2, 99–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita-Lin, E.M., Hevner, R., Wassarman, K.M., Martinez, S. & Rubenstein, J.L. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Panganiban, G. & Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371–4386 (2002).

    CAS  PubMed  Google Scholar 

  50. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Briscoe, J. Dodd, J. Gilthorpe, M. Goulding, M. Hargrave, A. Leutz, T. Ogura, C. Ragsdale, J. Rubenstein, A. Ruiz i Altaba, F. Schubert and C. Tabin for generously providing reagents and J. Gilthorpe, R. Wingate and other members of our laboratory for constructive criticism on the manuscript. This work was supported by the UK Medical Research Council and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lumsden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic representation of the role of Shh signalling from the ZLI in thalamic and prethalamic development. Regional gene expression is represented in the same colours as in Fig. 1. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiecker, C., Lumsden, A. Hedgehog signaling from the ZLI regulates diencephalic regional identity. Nat Neurosci 7, 1242–1249 (2004). https://doi.org/10.1038/nn1338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing