Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration

Abstract

Successful axon regeneration in the mammalian central nervous system (CNS) is at least partially compromised due to the inhibitors associated with myelin and glial scar. However, the intracellular signaling mechanisms underlying these inhibitory activities are largely unknown. Here we provide biochemical and functional evidence that conventional isoforms of protein kinase C (PKC) are key components in the signaling pathways that mediate the inhibitory activities of myelin components and chondroitin sulfate proteoglycans (CSPGs), the major class of inhibitors in the glial scar. Both the myelin inhibitors and CSPGs induce PKC activation. Blocking PKC activity pharmacologically and genetically attenuates the ability of CNS myelin and CSPGs to activate Rho and inhibit neurite outgrowth. Intrathecal infusion of a PKC inhibitor, Gö6976, into the site of dorsal hemisection promotes regeneration of dorsal column axons across and beyond the lesion site in adult rats. Thus, perturbing PKC activity could represent a therapeutic approach to stimulating axon regeneration after brain and spinal cord injuries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKC inhibitors elicit neurite outgrowth on myelin substrate.
Figure 2: Expression of dominant-negative PKC-α or -β overcomes myelin inhibition.
Figure 3: PKC inhibitors and mutant PKCs overcome CSPG inhibition.
Figure 4: PKC activation and signaling by myelin inhibitors and CSPG.
Figure 5: Schematic representation of the injury site and quantitation.
Figure 6: Immunofluorescence detection of dorsal column axonal regeneration elicited by Gö6976.
Figure 7: Gö6976 promotes dorsal column axonal regeneration.
Figure 8: Gö6976 promotes the regeneration of dorsal column but not CST axons.

Similar content being viewed by others

References

  1. Schwab, M.E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    Article  CAS  Google Scholar 

  2. Horner, P.J. & Gage, F.H. Regenerating the damaged central nervous system. Nature 407, 963–970 (2000).

    Article  CAS  Google Scholar 

  3. Spencer, T., Domeniconi, M., Cao, Z. & Filbin, M.T. New roles for old proteins in adult CNS axonal regeneration. Curr. Opin. Neurobiol. 13, 133–139 (2003).

    Article  CAS  Google Scholar 

  4. McGee, A.W. & Strittmatter, S.M. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 26, 193–198 (2003).

    Article  CAS  Google Scholar 

  5. Yiu, G. & He, Z. Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr. Opin. Neurobiol. 13, 545–551 (2003).

    Article  CAS  Google Scholar 

  6. Schwab, M.E. & Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  Google Scholar 

  7. Savio, T. & Schwab, M.E. Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci. 9, 1126–1133 (1989).

    Article  CAS  Google Scholar 

  8. Schnell, L. & Schwab, M.E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269–272 (1990).

    Article  CAS  Google Scholar 

  9. Bregman, B.S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    Article  CAS  Google Scholar 

  10. Huang, D.W., McKerracher, L., Braun, P.E. & David, S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24, 639–647 (1999).

    Article  CAS  Google Scholar 

  11. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R. & Filbin, M.T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767 (1994).

    Article  CAS  Google Scholar 

  12. McKerracher, L. et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811 (1994).

    Article  CAS  Google Scholar 

  13. Prinjha, R. et al. Inhibitor of neurite outgrowth in humans. Nature 403, 383–384 (2000).

    Article  CAS  Google Scholar 

  14. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  Google Scholar 

  15. GrandPre, T., Nakamura, F., Vartanian, T. & Strittmatter, S.M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  CAS  Google Scholar 

  16. Wang, K.C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    Article  CAS  Google Scholar 

  17. Kottis, V. et al. Oligodendrocyte-myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. J. Neurochem. 82, 1566–1569 (2002).

    Article  CAS  Google Scholar 

  18. Fournier, A.E., GrandPre, T. & Strittmatter, S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001).

    Article  CAS  Google Scholar 

  19. Domeniconi, M. et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35, 283–290 (2002).

    Article  CAS  Google Scholar 

  20. Liu, B.P., Fournier, A., GrandPre, T. & Strittmatter, S.M. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297, 1190–1193 (2002).

    Article  CAS  Google Scholar 

  21. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74–77 (2002).

    Article  CAS  Google Scholar 

  22. Wong, S.T. et al. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 5, 1302–1308 (2002).

    Article  CAS  Google Scholar 

  23. Brittis, P.A., Canning, D.R., Silver, J. Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science 255, 733–736 (1992).

    Article  CAS  Google Scholar 

  24. Bradbury, E.J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    Article  CAS  Google Scholar 

  25. Kuhn, T.B., Brown, M.D., Wilcox, C.L., Raper, J.A. & Bamburg, J.R. Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J. Neurosci. 19, 1965–1975 (1999).

    Article  CAS  Google Scholar 

  26. Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).

    Article  CAS  Google Scholar 

  27. Vinson, M. et al. Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J. Biol. Chem. 276, 20280–20285 (2001).

    Article  CAS  Google Scholar 

  28. Dergham, P. et al. Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577 (2002).

    Article  CAS  Google Scholar 

  29. Winton, M.J., Dubreuil, C.I., Lasko, D., Leclerc, N. & McKerracher, L. Characterization of new cell permeable C3-like proteins that inactivate Rho and stimulate neurite outgrowth on inhibitory substrates. J. Biol. Chem. 277, 32820–32829 (2002).

    Article  CAS  Google Scholar 

  30. Cai, D. et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739 (2001).

    Article  CAS  Google Scholar 

  31. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  Google Scholar 

  32. Jaken, S. Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 8, 168–173 (1996).

    Article  CAS  Google Scholar 

  33. Ming, G. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  Google Scholar 

  34. Prang, P., Del Turco, D. & Kapfhammer, J.P. Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4, GDNF, and modulators of G-proteins and protein kinase C. Exp. Neurol. 169, 135–147 (2001).

    Article  CAS  Google Scholar 

  35. Kaneto, H. et al. Involvement of protein kinase C beta 2 in c-myc induction by high glucose in pancreatic beta-cells. J. Biol. Chem. 277, 3680–3685 (2002).

    Article  CAS  Google Scholar 

  36. Ughrin, Y.M., Chen, Z.J. & Levine, J.M. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J. Neurosci. 23, 175–186 (2003).

    Article  CAS  Google Scholar 

  37. Laux, T. et al. GAP43, MARCKS and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149, 1455–1472 (2000).

    Article  CAS  Google Scholar 

  38. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. Embo J. 18, 578–585 (1999).

    Article  CAS  Google Scholar 

  39. Snow, D.M. et al. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Dev. Biol. 166, 87–100 (1994).

    Article  CAS  Google Scholar 

  40. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  41. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107, 209–221 (2001).

    Article  CAS  Google Scholar 

  42. Slater, S.J., Seiz, J.L., Stagliano, B.A. & Stubbs, C.D. Interaction of protein kinase C isozymes with Rho GTPases. Biochemistry 40, 4437–4445 (2001).

    Article  CAS  Google Scholar 

  43. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  44. Brown, D.A. & London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998).

    Article  CAS  Google Scholar 

  45. Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002).

    Article  CAS  Google Scholar 

  46. Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002).

    Article  CAS  Google Scholar 

  47. Neumann, S. & Woolf, C.J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    Article  CAS  Google Scholar 

  48. Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  Google Scholar 

  49. Bamber, N.I. et al. Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur. J. Neurosci. 13, 257–268 (2001).

    CAS  PubMed  Google Scholar 

  50. Xu, X.M. et al. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. 11, 1723–1740 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Roder, L. McKerracher and S. David for providing the MAG-Fc construct and the recombinant baculovirus for recombinant MAG, A. Kim, L. Wirthlin and L. Wilson for technical assistance, J. Wang for helping with illustrations and members of the Z.H. lab for reading the manuscript. This study was supported by the Burrough Wellcome Fund, the EJLB Foundation, the International Spinal Research Trust (ISRT), the John Merck Fund, the Klingenstein Fund, the Whitehall Foundation and the National Institutes of Health (to Z.H.). This work was also supported by NIH grant NS36350, ISRT, and the Daniel Heumann Fund for Spinal Cord Research (to X.M.X.). R.S. was an Edward R. and Anne G. Lefler Fellow and is supported by a grant from the Christopher Reeve Paralysis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Ming Xu or Zhigang He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivasankaran, R., Pei, J., Wang, K. et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat Neurosci 7, 261–268 (2004). https://doi.org/10.1038/nn1193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing