Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-catenin is critical for dendritic morphogenesis

Abstract

Regulated growth and arborization of dendritic processes are critical to the formation of functional neuronal networks. Here we identify β-catenin as a critical mediator of dendritic morphogenesis. We found that increasing the intracellular levels of β-catenin and other members of the cadherin/catenin complex, namely N-cadherin and αN-catenin, enhances dendritic arborization in rat hippocampal neurons, an effect that does not require Wnt/β-catenin-dependent transcription. Conversely, proteins that sequester β-catenin decreased dendritic branch tip number and total dendritic branch length. Enhancement of dendritic growth elicited by depolarization requires β-catenin and increased Wnt release. These results identify Wnt/β-catenin signaling as an important mediator of dendritic development and suggest that the intracellular level of the cadherin/catenin complex is a limiting factor during critical stages of dendritic morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β-catenin* expression causes an increase in TDBTN.
Figure 2: Correlation between β-catenin levels and TDBTN.
Figure 3: Ncad(intra) reduces TDBTN by sequestering endogenous β-catenin.
Figure 4: Expression of other members of the cadherin/catenin complex increases TDBTN.
Figure 5: The effects of β-catenin on dendritic branching do not require nuclear signaling.
Figure 6: The effects of neural activity on dendritic morphogenesis.
Figure 7: A central role for β-catenin in activity-dependent dendritic morphogenesis.
Figure 8: A critical role for Wnt signaling in activity-dependent regulation of dendritic arborization.

Similar content being viewed by others

References

  1. McAllister, A.K. Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973 (2000).

    Article  CAS  Google Scholar 

  2. Cline, H.T. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126 (2001).

    Article  CAS  Google Scholar 

  3. Scott, E.K. & Luo, L. How do dendrites take their shape? Nat. Neurosci. 4, 359–365 (2001).

    Article  CAS  Google Scholar 

  4. Wong, R.O.L. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

    Article  CAS  Google Scholar 

  5. Benson, D.L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci. 18, 6892–6904 (1998).

    Article  CAS  Google Scholar 

  6. Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  Google Scholar 

  7. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  Google Scholar 

  8. Nakayama, A.Y., Harms, M.B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  Google Scholar 

  9. Li, Z., Van Aelst, L. & Cline, H.T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217–225 (2000).

    Article  CAS  Google Scholar 

  10. Wong, W.T., Faulkner-Jones, B.E., Sanes, J.R. & Wong, R.O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000).

    Article  CAS  Google Scholar 

  11. Sin, W.C., Haas, K., Ruthazer, E.S. & Cline, H.T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480 (2002).

    Article  CAS  Google Scholar 

  12. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  13. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  14. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  Google Scholar 

  15. Chenn, A. & Walsh, C.A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  Google Scholar 

  16. Thomas, K.R., Deng, C.X. & Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Proc. Natl. Acad. Sci. USA 87, 7688–7692 (1990).

    Article  Google Scholar 

  17. McMahon, A.P. & Bradley, A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  18. Galceran, J., Miyashita-Lin, E.M., Devaney, E., Rubenstein, J.L. & Grosschedl, R. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127, 469–482 (2000).

    CAS  Google Scholar 

  19. Lee, S.M., Tole, S., Grove, E. & McMahon, A.P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  Google Scholar 

  20. Brault, V. et al. Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253–1264 (2001).

    CAS  PubMed  Google Scholar 

  21. Barth, A.I., Stewart, D.B. & Nelson, W.J. T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant β-catenin. Proc. Natl. Acad. Sci. USA 96, 4947–4952 (1999).

    Article  CAS  Google Scholar 

  22. Kintner, C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell 69, 225–236 (1992).

    Article  CAS  Google Scholar 

  23. Fujimori, T. & Takeichi, M. Disruption of epithelial cell-cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin. Mol. Biol. Cell 4, 37–47 (1993).

    Article  CAS  Google Scholar 

  24. Sanson, B., White, P. & Vincent, J.P. Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627–630 (1996).

    Article  Google Scholar 

  25. Sadot, E., Simcha, I., Shtutman, M., Ben-Ze'ev, A. & Geiger, B. Inhibition of β-catenin-mediated transactivation by cadherin derivatives. Proc. Natl. Acad. Sci. USA 95, 15339–15344 (1998).

    Article  CAS  Google Scholar 

  26. Wieschaus, E. & Riggleman, R. Autonomous requirements for the segment polarity gene armadillo during Drosophila embryogenesis. Cell 49, 177–184 (1987).

    Article  CAS  Google Scholar 

  27. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  Google Scholar 

  28. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  29. Montross, W.T., Ji, H. & McCrea, P.D. A β-catenin/engrailed chimera selectively suppresses Wnt signaling. J. Cell Sci. 113, 1759–1770 (2000).

    CAS  PubMed  Google Scholar 

  30. Hsu, S.C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell Biol. 18, 4807–4818 (1998).

    Article  CAS  Google Scholar 

  31. Giese, K., Amsterdam, A. & Grosschedl, R. DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev. 5, 2567–2578 (1991).

    Article  CAS  Google Scholar 

  32. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  33. Redmond, L., Kashani, A.H. & Ghosh, A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010 (2002).

    Article  CAS  Google Scholar 

  34. Rajan, I. & Cline, H.T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

    Article  CAS  Google Scholar 

  35. Rajan, I., Witte, S. & Cline, H.T. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol. 38, 357–368 (1999).

    Article  CAS  Google Scholar 

  36. Deisseroth, K., Heist, E.K. & Tsien, R.W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 399, 198–202 (1998).

    Article  Google Scholar 

  37. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  Google Scholar 

  38. Zorn, A.M. Wnt signalling: antagonistic Dickkopfs. Curr. Biol. 11, R592–595 (2001).

    Article  CAS  Google Scholar 

  39. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  40. Banker, G. & Goslin, K. (eds.) Culturing Nerve Cells (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  41. Hsieh, J.C., Rattner, A., Smallwood, P.M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 96, 3546–3571 (1999).

    Article  CAS  Google Scholar 

  42. Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002).

    Article  CAS  Google Scholar 

  43. Roura, S. et al. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation Independent regulation of adherens and tight junctions by tyrosine phosphorylation in Caco-2 cells. J. Biol. Chem. 274, 36734–36740 (1999).

    Article  CAS  Google Scholar 

  44. Murase, S., Mosser, E. & Schuman, E.M. Depolarization drives β-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

    Article  CAS  Google Scholar 

  45. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (1993).

    Article  Google Scholar 

  46. Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    Article  CAS  Google Scholar 

  47. Hall, A.C., Lucas, F.R. & Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    Article  CAS  Google Scholar 

  48. Packard, M. et al. The Drosophila Wnt, Wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  Google Scholar 

  49. Xia, Z., Dudek, H., Miranti, C.K. & Greenberg, M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Barth, W. J. Nelson, S. Bamji, L. Reichardt, D. Benson, D. Colman, S. Aaronson, T. Chatila, H. Clevers, R. Grosschedl, L. Luo, P. McCrea, M. Waterman, and L. Ailles for DNA constructs, K. Deisseroth and S. Singla for the Wnt conditioned medium, and N. Calakos for the astryocyte cultures. We thank T. Lizama, L. Esaura and J. Fisher for hippocampal culture preparation and excellent technical assistance. We are grateful to C. Garner, L. Luo, K. Deisseroth and S. Singla for comments on the manuscript and to members of the Malenka lab for discussion. This work was supported by grants from the National Institutes of Health (to R.C.M) and a Wellcome International Prize Travelling Research Fellowship (to X.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Yu or Robert C Malenka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Malenka, R. β-catenin is critical for dendritic morphogenesis. Nat Neurosci 6, 1169–1177 (2003). https://doi.org/10.1038/nn1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing