Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor–mediated currents

Abstract

KCC2 is a neuron-specific K+-Cl co-transporter that maintains a low intracellular Cl concentration that is essential for hyperpolarizing inhibition mediated by GABAA receptors. Deficits in KCC2 activity occur in disease states associated with pathophysiological glutamate release. However, the mechanisms by which elevated glutamate alters KCC2 function are unknown. The phosphorylation of KCC2 residue Ser940 is known to regulate its surface activity. We found that NMDA receptor activity and Ca2+ influx caused the dephosphorylation of Ser940 in dissociated rat neurons, leading to a loss of KCC2 function that lasted longer than 20 min. Protein phosphatase 1 mediated the dephosphorylation events of Ser940 that coincided with a deficit in hyperpolarizing GABAergic inhibition resulting from the loss of KCC2 activity. Blocking dephosphorylation of Ser940 reduced the glutamate-induced downregulation of KCC2 and substantially improved the maintenance of hyperpolarizing GABAergic inhibition. Reducing the downregulation of KCC2 therefore has therapeutic potential in the treatment of neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The furosemide-sensitive K+-Cl pump KCC2 generates hyperpolarizing GABA-activated currents.
Figure 2: Glutamate application switches GABA transmission to depolarizing and excitatory.
Figure 3: Glutamate shifts EGABA to more depolarized potentials.
Figure 4: Glutamate induces the dephosphorylation of Ser940 and the degradation of KCC2.
Figure 5: Glutamate mediates its effects on KCC2 via a Ca2+-dependent mechanism.
Figure 6: The glutamate-induced effects on KCC2 were mediated by NMDA receptors.
Figure 7: The dephosphorylation of Ser940 and internalization of KCC2 caused by glutamate is dependent on PP1.
Figure 8: OKA reduced the glutamate-induced shift in EGABA.

Similar content being viewed by others

References

  1. Payne, J.A., Stevenson, T.J. & Donaldson, L.F. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J. Biol. Chem. 271, 16245–16252 (1996).

    Article  CAS  Google Scholar 

  2. Rivera, C. et al. The K+/Cl– co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  Google Scholar 

  3. Hübner, C.A. et al. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30, 515–524 (2001).

    Article  Google Scholar 

  4. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  Google Scholar 

  5. Lu, J., Karadsheh, M. & Delpire, E. Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J. Neurobiol. 39, 558–568 (1999).

    Article  CAS  Google Scholar 

  6. Blaesse, P., Airaksinen, M.S., Rivera, C. & Kaila, K. Cation-chloride cotransporters and neuronal function. Neuron 61, 820–838 (2009).

    Article  CAS  Google Scholar 

  7. Kahle, K.T. et al. Roles of the cation-chloride cotransporters in neurological disease. Nat. Clin. Pract. Neurol. 4, 490–503 (2008).

    Article  CAS  Google Scholar 

  8. Coull, J.A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003).

    Article  CAS  Google Scholar 

  9. Cramer, S.W. et al. The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury. Mol. Pain 4, 36 (2008).

    Article  Google Scholar 

  10. Lu, Y., Zheng, J., Xiong, L., Zimmermann, M. & Yang, J. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat. J. Physiol. (Lond.) 586, 5701–5715 (2008).

    Article  CAS  Google Scholar 

  11. Price, T.J., Cervero, F., Gold, M.S., Hammond, D.L. & Prescott, S.A. Chloride regulation in the pain pathway. Brain Res. Rev. 60, 149–170 (2009).

    Article  CAS  Google Scholar 

  12. Wu, L.A., Huang, J., Wang, W., Wang, X.J. & Wu, S.X. Down-regulation of K+-Cl co-transporter 2 in mouse medullary dorsal horn contributes to the formalin-induced inflammatory orofacial pain. Neurosci. Lett. 457, 36–40 (2009).

    Article  CAS  Google Scholar 

  13. Galeffi, F., Sah, R., Pond, B.B., George, A. & Schwartz-Bloom, R.D. Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. J. Neurosci. 24, 4478–4488 (2004).

    Article  CAS  Google Scholar 

  14. Jaenisch, N., Witte, O.W. & Frahm, C. Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke 41, e151–e159 (2010).

    Article  CAS  Google Scholar 

  15. Papp, E., Rivera, C., Kaila, K. & Freund, T.F. Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia. Neuroscience 154, 677–689 (2008).

    Article  CAS  Google Scholar 

  16. Ginsberg, M.D. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55, 363–389 (2008).

    Article  CAS  Google Scholar 

  17. Kristensen, B.W., Noraberg, J. & Zimmer, J. The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures. Brain Res. 973, 303–306 (2003).

    Article  CAS  Google Scholar 

  18. Clarkson, A.N., Huang, B.S., MacIsaac, S.E., Mody, I. & Carmichael, S.T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).

    Article  CAS  Google Scholar 

  19. Jin, X., Huguenard, J.R. & Prince, D.A. Impaired Cl– extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. J. Neurophysiol. 93, 2117–2126 (2005).

    Article  CAS  Google Scholar 

  20. Pathak, H.R. et al. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J. Neurosci. 27, 14012–14022 (2007).

    Article  CAS  Google Scholar 

  21. Rivera, C. et al. Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J. Neurosci. 24, 4683–4691 (2004).

    Article  CAS  Google Scholar 

  22. Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. & Miles, R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298, 1418–1421 (2002).

    Article  CAS  Google Scholar 

  23. Huberfeld, G. et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27, 9866–9873 (2007).

    Article  CAS  Google Scholar 

  24. Semah, F. et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51, 1256–1262 (1998).

    Article  CAS  Google Scholar 

  25. Stephen, L.J., Kwan, P. & Brodie, M.J. Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment? Epilepsia 42, 357–362 (2001).

    Article  CAS  Google Scholar 

  26. Kahle, K.T. et al. WNK3 modulates transport of Cl– in and out of cells: implications for control of cell volume and neuronal excitability. Proc. Natl. Acad. Sci. USA 102, 16783–16788 (2005).

    Article  CAS  Google Scholar 

  27. Rinehart, J. et al. Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell 138, 525–536 (2009).

    Article  CAS  Google Scholar 

  28. Watanabe, M., Wake, H., Moorhouse, A.J. & Nabekura, J. Clustering of neuronal K+-Cl cotransporters in lipid rafts by tyrosine phosphorylation. J. Biol. Chem. 284, 27980–27988 (2009).

    Article  CAS  Google Scholar 

  29. Wake, H. et al. Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J. Neurosci. 27, 1642–1650 (2007).

    Article  CAS  Google Scholar 

  30. Lee, H.H., Jurd, R. & Moss, S.J. Tyrosine phosphorylation regulates the membrane trafficking of the potassium chloride co-transporter KCC2. Mol. Cell. Neurosci. 45, 173–179 (2010).

    Article  CAS  Google Scholar 

  31. Lee, H.H. et al. Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2. J. Biol. Chem. 282, 29777–29784 (2007).

    Article  CAS  Google Scholar 

  32. During, M.J. & Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607–1610 (1993).

    Article  CAS  Google Scholar 

  33. Kitamura, A. et al. Sustained depolarizing shift of the GABA reversal potential by glutamate receptor activation in hippocampal neurons. Neurosci. Res. 62, 270–277 (2008).

    Article  CAS  Google Scholar 

  34. Banke, T.G. & McBain, C.J. GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development. J. Neurosci. 26, 11720–11725 (2006).

    Article  CAS  Google Scholar 

  35. Hewitt, S.A., Wamsteeker, J.I., Kurz, E.U. & Bains, J.S. Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nat. Neurosci. 12, 438–443 (2009).

    Article  CAS  Google Scholar 

  36. Vargová, L., Jendelová, P., Chvátal, A. & Syková, E. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. J. Cereb. Blood Flow Metab. 21, 1077–1089 (2001).

    Article  Google Scholar 

  37. Plotkin, M.D., Snyder, E.Y., Hebert, S.C. & Delpire, E. Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA′s excitatory role in immature brain. J. Neurobiol. 33, 781–795 (1997).

    Article  CAS  Google Scholar 

  38. Cohen, P. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 453–508 (1989).

    Article  CAS  Google Scholar 

  39. Földy, C., Lee, S.H., Morgan, R.J. & Soltesz, I. Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2. Nat. Neurosci. 13, 1047–1049 (2010).

    Article  Google Scholar 

  40. Staley, K., Smith, R., Schaack, J., Wilcox, C. & Jentsch, T.J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17, 543–551 (1996).

    Article  CAS  Google Scholar 

  41. Thompson, S.M. & Gahwiler, B.H. Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl– in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523 (1989).

    Article  CAS  Google Scholar 

  42. Banke, T.G. & Gegelashvili, G. Tonic activation of group I mGluRs modulates inhibitory synaptic strength by regulating KCC2 activity. J. Physiol. (Lond.) 586, 4925–4934 (2008).

    Article  CAS  Google Scholar 

  43. Nabekura, J. et al. Reduction of KCC2 expression and GABAA receptor–mediated excitation after in vivo axonal injury. J. Neurosci. 22, 4412–4417 (2002).

    Article  CAS  Google Scholar 

  44. Toyoda, H. et al. Induction of NMDA and GABAA receptor–mediated Ca2+ oscillations with KCC2 mRNA downregulation in injured facial motoneurons. J. Neurophysiol. 89, 1353–1362 (2003).

    Article  CAS  Google Scholar 

  45. Bladin, C.F. et al. Seizures after stroke: a prospective multicenter study. Arch. Neurol. 57, 1617–1622 (2000).

    Article  CAS  Google Scholar 

  46. Garrett, M.C. et al. Predictors of seizure onset after intracerebral hemorrhage and the role of long-term antiepileptic therapy. J. Crit. Care 24, 335–339 (2009).

    Article  Google Scholar 

  47. Cavus, I. et al. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 49, 1358–1366 (2008).

    Article  Google Scholar 

  48. Palma, E. et al. Anomalous levels of Cl transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc. Natl. Acad. Sci. USA 103, 8465–8468 (2006).

    Article  CAS  Google Scholar 

  49. Rivera, C. et al. BDNF-induced TrkB activation downregulates the K+-Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J. Cell Biol. 159, 747–752 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Haydon and L.K. Chau for critical comments on the manuscript and H. Tang and L. Silayeva for providing technical assistance. The work was supported in part by US National Institutes of Health/National Institute of Neurological Disorders and Stroke grants NS036296, NS047478, NS048045 and NS054900. H.H.C.L. is supported by a Postdoctoral Fellowship from the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

H.H.C.L. and J.A.W. performed biochemical experiments, and T.Z.D. and P.A.D. performed electrophysiological recordings. H.H.C.L., T.Z.D. and S.J.M. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Stephen J Moss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Deeb, T., Walker, J. et al. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor–mediated currents. Nat Neurosci 14, 736–743 (2011). https://doi.org/10.1038/nn.2806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing