Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons

Abstract

Homeostatic synaptic scaling alters the strength of synapses to compensate for prolonged changes in network activity and involves both excitatory and inhibitory neurons. The immediate-early gene Narp (neuronal activity–regulated pentraxin) encodes a secreted synaptic protein that can bind to and induce clustering of AMPA receptors (AMPARs). We found that Narp prominently accumulated at excitatory synapses on parvalbumin-expressing interneurons (PV-INs). Increasing network activity resulted in a homeostatic increase of excitatory synaptic strength onto PV-INs that increased inhibitory drive and this response was absent in neurons cultured from Narp−/− mice. Activity-dependent changes in the strength of excitatory inputs on PV-INs in acute hippocampal slices were also dependent on Narp and Narp−/− mice had increased sensitivity to kindling-induced seizures. We propose that Narp recruits AMPARs at excitatory synapses onto PV-INs to rebalance network excitation/inhibition dynamics following episodes of increased circuit activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Narp expression is highly enriched at excitatory synapses on PV-INs.
Figure 2: Narp expression on PV-INs is dynamically regulated by activity.
Figure 3: Narp is derived from presynaptic neurons that contact PV-INs.
Figure 4: Disruption of perineuronal nets results in loss of surface Narp accumulation.
Figure 5: Narp modulates GluR4 on PV-INs in an activity-dependent manner.
Figure 6: Narp is required for homeostatic scaling of excitatory synaptic inputs onto PV-INs and regulates their spontaneous firing frequency.
Figure 7: Narp regulates PV-IN synaptic strength in acute hippocampal slices.
Figure 8: Narp−/− mice are hypersensitive to kindling-induced seizures.

Similar content being viewed by others

References

  1. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Turrigiano, G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shepherd, J.D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, S. et al. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsui, C.C. et al. Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J. Neurosci. 16, 2463–2478 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, D. et al. Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39, 513–528 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Dodds, D.C., Omeis, I.A., Cushman, S.J., Helms, J.A. & Perin, M.S. Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J. Biol. Chem. 272, 21488–21494 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Sia, G.M. et al. Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron 55, 87–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cho, R.W. et al. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron 57, 858–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bjartmar, L. et al. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J. Neurosci. 26, 6269–6281 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kinney, J.W. et al. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J. Neurosci. 26, 1604–1615 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mi, R. et al. Differing mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons. J. Neurosci. 22, 7606–7616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Brien, R.J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Doyle, S., Pyndiah, S., De Gois, S. & Erickson, J.D. Excitation-transcription coupling via calcium/calmodulin-dependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity. J. Biol. Chem. 285, 14366–14376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Honig, M.G. & Hume, R.I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. Cell Biol. 103, 171–187 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. O'Brien, R. et al. Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J. Neurosci. 22, 4487–4498 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Härtig, W. et al. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 842, 15–29 (1999).

    Article  PubMed  Google Scholar 

  21. Härtig, W., Brauer, K. & Bruckner, G. Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport 3, 869–872 (1992).

    Article  PubMed  Google Scholar 

  22. Kosaka, T. & Heizmann, C.W. Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res. 483, 158–163 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Brückner, G. et al. Acute and long-lasting changes in extracellular-matrix chondroitin-sulphate proteoglycans induced by injection of chondroitinase ABC in the adult rat brain. Exp. Brain Res. 121, 300–310 (1998).

    Article  PubMed  Google Scholar 

  24. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C.W. & Hama, K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 416, 369–374 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Koh, D.S., Geiger, J.R., Jonas, P. & Sakmann, B. Ca2+-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J. Physiol. (Lond.) 485, 383–402 (1995).

    Article  CAS  Google Scholar 

  27. Reti, I.M. & Baraban, J.M. Sustained increase in Narp protein expression following repeated electroconvulsive seizure. Neuropsychopharmacology 23, 439–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs, E.C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Morimoto, K., Fahnestock, M. & Racine, R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Alle, H., Jonas, P. & Geiger, J.R. PTP and LTP at a hippocampal mossy fiber-interneuron synapse. Proc. Natl. Acad. Sci. USA 98, 14708–14713 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maffei, A., Nataraj, K., Nelson, S.B. & Turrigiano, G.G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Nissen, W., Szabo, A., Somogyi, J., Somogyi, P. & Lamsa, K.P. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor. J. Neurosci. 30, 1337–1347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Gogolla, N., Caroni, P., Luthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009).

    CAS  PubMed  Google Scholar 

  36. Bekenstein, J.W. & Lothman, E.W. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 259, 97–100 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Lewis, D.A., Hashimoto, T. & Volk, D.W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Doyle, S., Pyndiah, S., De Gois, S. & Erickson, J.D. Excitation-transcription coupling via CaMK/ERK signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity. J. Biol. Chem. 285, 14366–14376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Emsley, J. et al. Structure of pentameric human serum amyloid P component. Nature 367, 338–345 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Frischknecht, R. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12, 897–904 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Berke, J.D., Paletzki, R.F., Aronson, G.J., Hyman, S.E. & Gerfen, C.R. A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301–5310 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci. 10, 478–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Pelkey, K.A., Lavezzari, G., Racca, C., Roche, K.W. & McBain, C.J. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 46, 89–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Cole, A.J., Abu-Shakra, S., Saffen, D.W., Baraban, J.M. & Worley, P.F. Rapid rise in transcription factor mRNAs in rat brain after electroshock-induced seizures. J. Neurochem. 55, 1920–1927 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Sayin, U., Osting, S., Hagen, J., Rutecki, P. & Sutula, T. Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J. Neurosci. 23, 2759–2768 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sloviter, R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1, 41–66 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.S. Perin for the Narp−/− mouse, R.L. Huganir (Johns Hopkins University) for antibodies to GluR1, M. Dehoff and P. Chuang for animal care, M. Papapavlou for administrative assistance and X. Yuan and B. Jeffries for technical assistance. Work in the laboratory of C.J.M. is supported by a US National Institutes of Health intramural award. Work in the laboratory of P.F.W. is supported by US National Institutes of Health grants PAR-02-059 and NS 39156.

Author information

Authors and Affiliations

Authors

Contributions

M.C.C. designed the experiments, carried out the in vitro immunocytochemical and biochemical studies and analysis and wrote the bulk of the manuscript. J.M.P. performed the in vitro electrophysiological experiments and analysis and contributed to the manuscript. K.A.P. performed the slice electrophysiological experiments and analysis and contributed to the manuscript. H.L.G. performed the kindling experiments and analysis and contributed to the manuscript. D.X. provided reagents and helped with the discussion. P.F.W., D.J.L., T.P.S. and C.J.M. directed the project.

Corresponding author

Correspondence to Paul F Worley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 2696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M., Park, J., Pelkey, K. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13, 1090–1097 (2010). https://doi.org/10.1038/nn.2621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing