Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation

Abstract

Selective expression of retinal cone opsin genes is essential for color vision, but the mechanism mediating this process is poorly understood. Both vertebrate rod and medium wavelength–sensitive (M) cone photoreceptors differentiate by repression of a short wavelength–sensitive (S) cone differentiation program. We found that Pias3 acts in mouse cone photoreceptors to activate expression of M opsin and repress expression of S opsin, with the transcription factors Trβ2 and Rxrγ mediating preferential expression of Pias3 in M cones. Finally, we observed that Pias3 directly regulated M and S cone opsin expression by modulating the cone-enriched transcription factors Rxrγ, Rorα and Trβ1. Our results indicate that Pias3-dependent SUMOylation of photoreceptor-specific transcription factors is a common mechanism that controls both rod and cone photoreceptor subtype specification, regulating distinct molecular targets in the two cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pias3 is preferentially expressed in cones expressing M cone opsin.
Figure 2: Pias3-dependent SUMOylation is necessary and sufficient to direct cone opsin subtype expression.
Figure 3: Pias3 is a transcriptional target of Trβ2 and Rxrγ.
Figure 4: T3-regulated cone photoreceptor subtype specification is Pias3 dependent.
Figure 5: Pias3-dependent regulation of cone subtype specification can occur independently of Trβ2.
Figure 6: Molecular mechanism of action of Pias3 in developing cones.

Similar content being viewed by others

References

  1. Solomon, S.G. & Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 8, 276–286 (2007).

    Article  CAS  Google Scholar 

  2. Osorio, D. & Vorobyev, M. A review of the evolution of animal colour vision and visual communication signals. Vision Res. 48, 2042–2051 (2008).

    Article  CAS  Google Scholar 

  3. Collin, S.P. & Trezise, A.E. The origins of colour vision in vertebrates. Clin. Exp. Optom. 87, 217–223 (2004).

    Article  Google Scholar 

  4. Pichaud, F., Briscoe, A. & Desplan, C. Evolution of color vision. Curr. Opin. Neurobiol. 9, 622–627 (1999).

    Article  CAS  Google Scholar 

  5. Peichl, L. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287, 1001–1012 (2005).

    Article  Google Scholar 

  6. Röhlich, P., van Veen, T. & Szel, A. Two different visual pigments in one retinal cone cell. Neuron 13, 1159–1166 (1994).

    Article  Google Scholar 

  7. Lukáts, A., Szabo, A., Rohlich, P., Vigh, B. & Szel, A. Photopigment coexpression in mammals: comparative and developmental aspects. Histol. Histopathol. 20, 551–574 (2005).

    PubMed  Google Scholar 

  8. Applebury, M.L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000).

    Article  CAS  Google Scholar 

  9. Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  Google Scholar 

  10. Nishida, A. et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6, 1255–1263 (2003).

    Article  CAS  Google Scholar 

  11. Akhmedov, N.B. et al. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 97, 5551–5556 (2000).

    Article  CAS  Google Scholar 

  12. Haider, N.B. et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat. Genet. 24, 127–131 (2000).

    Article  CAS  Google Scholar 

  13. Mears, A.J. et al. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447–452 (2001).

    Article  CAS  Google Scholar 

  14. Peng, G.H., Ahmad, O., Ahmad, F., Liu, J. & Chen, S. The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum. Mol. Genet. 14, 747–764 (2005).

    Article  CAS  Google Scholar 

  15. Ng, L., Ma, M., Curran, T. & Forrest, D. Developmental expression of thyroid hormone receptor beta2 protein in cone photoreceptors in the mouse. Neuroreport 20, 627–631 (2009).

    Article  CAS  Google Scholar 

  16. Ng, L. et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27, 94–98 (2001).

    Article  CAS  Google Scholar 

  17. Roberts, M.R., Hendrickson, A., McGuire, C.R. & Reh, T.A. Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Invest. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005).

    Article  Google Scholar 

  18. Roberts, M.R., Srinivas, M., Forrest, D., Morreale de Escobar, G. & Reh, T.A. Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc. Natl. Acad. Sci. USA 103, 6218–6223 (2006).

    Article  CAS  Google Scholar 

  19. Applebury, M.L. et al. Transient expression of thyroid hormone nuclear receptor TRbeta2 sets S opsin patterning during cone photoreceptor genesis. Dev. Dyn. 236, 1203–1212 (2007).

    Article  CAS  Google Scholar 

  20. Pessôa, C.N. et al. Thyroid hormone action is required for normal cone opsin expression during mouse retinal development. Invest. Ophthalmol. Vis. Sci. 49, 2039–2045 (2008).

    Article  Google Scholar 

  21. Hennig, A.K., Peng, G.H. & Chen, S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res. 1192, 114–133 (2008).

    Article  CAS  Google Scholar 

  22. Onishi, A. et al. Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61, 234–246 (2009).

    Article  CAS  Google Scholar 

  23. Long, J., Wang, G., Matsuura, I., He, D. & Liu, F. Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc. Natl. Acad. Sci. USA 101, 99–104 (2004).

    Article  CAS  Google Scholar 

  24. Boggio, R., Colombo, R., Hay, R.T., Draetta, G.F. & Chiocca, S. A mechanism for inhibiting the SUMO pathway. Mol. Cell 16, 549–561 (2004).

    Article  CAS  Google Scholar 

  25. Kliewer, S.A., Umesono, K., Mangelsdorf, D.J. & Evans, R.M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature 355, 446–449 (1992).

    Article  CAS  Google Scholar 

  26. Li, D., Li, T., Wang, F., Tian, H. & Samuels, H.H. Functional evidence for retinoid X receptor (RXR) as a nonsilent partner in the thyroid hormone receptor/RXR heterodimer. Mol. Cell. Biol. 22, 5782–5792 (2002).

    Article  CAS  Google Scholar 

  27. McCaffrery, P., Posch, K.C., Napoli, J.L., Gudas, L. & Drager, U.C. Changing patterns of the retinoic acid system in the developing retina. Dev. Biol. 158, 390–399 (1993).

    Article  CAS  Google Scholar 

  28. Fujieda, H., Bremner, R., Mears, A.J. & Sasaki, H. Retinoic acid receptor–related orphan receptor alpha regulates a subset of cone genes during mouse retinal development. J. Neurochem. 108, 91–101 (2009).

    Article  CAS  Google Scholar 

  29. Hwang, E.J. et al. SUMOylation of RORalpha potentiates transcriptional activation function. Biochem. Biophys. Res. Commun. 378, 513–517 (2009).

    Article  CAS  Google Scholar 

  30. Szél, A., Rohlich, P., Mieziewska, K., Aguirre, G. & van Veen, T. Spatial and temporal differences between the expression of short- and middle-wave sensitive cone pigments in the mouse retina: a developmental study. J. Comp. Neurol. 331, 564–577 (1993).

    Article  Google Scholar 

  31. McCaffery, P., Wagner, E., O'Neil, J., Petkovich, M. & Drager, U.C. Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression. Mech. Dev. 82, 119–130 (1999).

    Article  CAS  Google Scholar 

  32. Li, H. et al. A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech. Dev. 95, 283–289 (2000).

    Article  CAS  Google Scholar 

  33. el Akawi, Z. & Napoli, J.L. Rat liver cytosolic retinal dehydrogenase: comparison of 13-cis-, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity. Biochemistry 33, 1938–1943 (1994).

    Article  CAS  Google Scholar 

  34. Lin, M., Zhang, M., Abraham, M., Smith, S.M. & Napoli, J.L. Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression and activity in 9-cis-retinoic acid biosynthesis in intact cells. J. Biol. Chem. 278, 9856–9861 (2003).

    Article  CAS  Google Scholar 

  35. Lamb, T.D. Evolution of vertebrate retinal photoreception. Phil. Trans. R. Soc. Lond. B 364, 2911–2924 (2009).

    Article  CAS  Google Scholar 

  36. Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Phil. Trans. R. Soc. Lond. B 364, 2881–2895 (2009).

    Article  CAS  Google Scholar 

  37. Terakita, A. The opsins. Genome Biol. 6, 213 (2005).

    Article  Google Scholar 

  38. Bowmaker, J.K. Evolution of vertebrate visual pigments. Vision Res. 48, 2022–2041 (2008).

    Article  CAS  Google Scholar 

  39. Lamb, T.D., Collin, S.P. & Pugh, E.N., Jr. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8, 960–976 (2007).

    Article  CAS  Google Scholar 

  40. Alvarez-Delfin, K. et al. Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development. Proc. Natl. Acad. Sci. USA 106, 2023–2028 (2009).

    Article  CAS  Google Scholar 

  41. Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004).

    Article  CAS  Google Scholar 

  42. Matsuda, T. & Cepko, C.L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA 101, 16–22 (2004).

    Article  CAS  Google Scholar 

  43. Blackshaw, S. et al. Genomic analysis of mouse retinal development. PLoS Biol. 2, e247 (2004).

    Article  Google Scholar 

  44. Barroso-Chinea, P. et al. Detection of two different mRNAs in a single section by dual in situ hybridization: a comparison between colorimetric and fluorescent detection. J. Neurosci. Methods 162, 119–128 (2007).

    Article  CAS  Google Scholar 

  45. Peng, G.H. & Chen, S. Chromatin immunoprecipitation identifies photoreceptor transcription factor targets in mouse models of retinal degeneration: new findings and challenges. Vis. Neurosci. 22, 575–586 (2005).

    Article  Google Scholar 

  46. Geisberg, J.V. & Struhl, K. Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res. 32, e151 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Forrest for providing antibodies to Trβ2 and for supplying Trβ2−/− and Trβ1−/−; Trβ2−/− mice. We also thank J. Nathans, T. Shimogori, W. Yap and members of the Blackshaw laboratory for their comments on the manuscript. This work was supported by grants from the US National Institutes of Health (R01EY017015 to S.B. and RO1EY012543 to S.C.). S.B. is a W.M. Keck Distinguished Young Investigator in Medical Science.

Author information

Authors and Affiliations

Authors

Contributions

A.O., S.C. and S.B. designed the study. A.O. and G.-H.P. performed the experiments. A.O., G.-H.P. and S.C. contributed reagents and analytic tools. A.O., G.-H.P., S.C. and S.B. analyzed the data. A.O. and S.B. wrote the manuscript.

Corresponding author

Correspondence to Seth Blackshaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 4905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishi, A., Peng, GH., Chen, S. et al. Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nat Neurosci 13, 1059–1065 (2010). https://doi.org/10.1038/nn.2618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing