Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+

Abstract

Ca2+ is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca2+ coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca2+ nanodomains around Ca2+ channels, where exocytosis is triggered. Bulk Ca2+ outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca2+-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca2+ simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca2+-dependent endocytosis undergo major developmental changes at this fast central synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different effects of EGTA and BAPTA on vesicle endocytosis at the developing calyces of Held.
Figure 2: Ca2+ dependence of fast and slow endocytosis elicited by repetitive stimulation at the calyx of Held.
Figure 3: Effects of inhibitors for CaM and CaN in fast and slow endocytosis at P7–9 calyces.
Figure 4: No effect of inhibitors for CaM and CaN in fast and slow endocytosis at P13–14 calyces.
Figure 5: Developmental decline of CaN expression at the calyx of Held presynaptic terminals.
Figure 6: Developmental decline of GTP-independent endocytic component.

Similar content being viewed by others

References

  1. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  2. Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).

    Article  CAS  Google Scholar 

  3. Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).

    Article  CAS  Google Scholar 

  4. Neves, G., Gomis, A. & Lagnado, L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc. Natl. Acad. Sci. USA 98, 15282–15287 (2001).

    Article  CAS  Google Scholar 

  5. Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690 (2001).

    Article  CAS  Google Scholar 

  6. Wu, W., Xu, J., Wu, X.-S. & Wu, L.-G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).

    Article  CAS  Google Scholar 

  7. Hosoi, N., Holt, M. & Sakaba, T. Calcium-dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63, 216–229 (2009).

    Article  CAS  Google Scholar 

  8. Wu, X.-S. et al. Ca2+ and calmodulin initiates all forms of endocytosis during depolarization at a nerve terminal. Nat. Neurosci. 12, 1003–1010 (2009).

    Article  CAS  Google Scholar 

  9. Renden, R. & von Gersdorff, H. Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. J. Neurophysiol. 98, 3349–3359 (2007).

    Article  Google Scholar 

  10. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  Google Scholar 

  11. Balaji, J., Armbruster, M. & Ryan, T.A. Calcium control of endocytic capacity at a CNS synapse. J. Neurosci. 28, 6742–6749 (2008).

    Article  CAS  Google Scholar 

  12. Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).

    Article  CAS  Google Scholar 

  13. Augustine, G.J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  Google Scholar 

  14. Jewett, D.L. & Romano, M.N. Neonatal development of auditory system potentials averaged from the scalp of rat and cat. Brain Res. 36, 101–115 (1972).

    Article  CAS  Google Scholar 

  15. Borst, J.G.G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  Google Scholar 

  16. Fedchyshyn, M.J. & Wang, L.-Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005).

    Article  CAS  Google Scholar 

  17. Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–205 (1996).

    Article  CAS  Google Scholar 

  18. Engisch, K.L. & Nowycky, M.C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J. Physiol. (Lond.) 506, 591–608 (1998).

    Article  CAS  Google Scholar 

  19. Chan, S.-A. & Smith, C. Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells. J. Physiol. (Lond.) 537, 871–885 (2001).

    Article  CAS  Google Scholar 

  20. Marks, B. & McMahon, H.T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).

    Article  CAS  Google Scholar 

  21. Cousin, M.A. & Robinson, P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 24, 659–665 (2001).

    Article  CAS  Google Scholar 

  22. Slepnev, V.I., Ochoa, G.-C., Butler, M.H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    Article  CAS  Google Scholar 

  23. Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005).

    Article  CAS  Google Scholar 

  24. Jockusch, W.J., Praefcke, G.J.K., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).

    Article  CAS  Google Scholar 

  25. Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci. 21, 6467–6474 (2001).

    Article  CAS  Google Scholar 

  26. Xu, J. et al. GTP-independent rapid and slow endocytosis at a central synapse. Nat. Neurosci. 11, 45–53 (2008).

    Article  CAS  Google Scholar 

  27. Török, K. et al. Inhibition of calmodulin-activated smooth-muscle myosin light-chain kinase by calmodulin-binding peptides and fluorescent (phosphodiesterase-activating) calmodulin derivatives. Biochemistry 37, 6188–6198 (1998).

    Article  Google Scholar 

  28. Nakamura, T., Yamashita, T., Saitoh, N. & Takahashi, T. Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of Held. J. Physiol. (Lond.) 586, 2253–2261 (2008).

    Article  CAS  Google Scholar 

  29. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  30. Gad, H., Löw, P., Zotova, E., Brodin, L. & Shupliakov, O. Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21, 607–616 (1998).

    Article  CAS  Google Scholar 

  31. Roos, J. & Kelly, R.B. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr. Biol. 9, 1411–1414 (1999).

    Article  CAS  Google Scholar 

  32. Teng, H. & Wilkinson, R.S. Clathrin-mediated endocytosis near active zones in snake motor boutons. J. Neurosci. 20, 7986–7993 (2000).

    Article  CAS  Google Scholar 

  33. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin 1 is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  CAS  Google Scholar 

  34. Llinás, R.R., Sugimori, M., Moran, K.A., Moreira, J.E. & Fukuda, M. Vesicular reuptake inhibition by a synaptotagmin I C2B domain antibody at the squid giant synapse. Proc. Natl. Acad. Sci. USA 101, 17855–17860 (2004).

    Article  Google Scholar 

  35. Daly, C. & Ziff, E.B. Ca2+-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J. Biol. Chem. 277, 9010–9015 (2002).

    Article  CAS  Google Scholar 

  36. Chen, Y. et al. Formation of an endophillin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115, 37–48 (2003).

    Article  CAS  Google Scholar 

  37. Watanabe, H. et al. Involvement of Ca2+ channel synprint site in synaptic vesicle endocytosis. J. Neurosci. 30, 655–660 (2010).

    Article  CAS  Google Scholar 

  38. Xu, J. & Wu, L.-G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).

    Article  CAS  Google Scholar 

  39. Nakamura, Y., DiGregorio, D. & Takahashi, T. Single action potential–evoked Ca2+ transients at the calyx of Held presynaptic terminal. Neurosci. Res. 58, S71 (2007).

    Article  Google Scholar 

  40. Shifman, J.M., Choi, M.H., Mihalas, S., Mayo, S.L. & Kennedy, M.B. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl. Acad. Sci. USA 103, 13968–13973 (2006).

    Article  CAS  Google Scholar 

  41. Burgoyne, R.D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signaling. Nat. Rev. Neurosci. 8, 182–193 (2007).

    Article  CAS  Google Scholar 

  42. Kawasaki, F., Hazen, M. & Ordway, R.W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic membrane trafficking. Nat. Neurosci. 3, 859–860 (2000).

    Article  CAS  Google Scholar 

  43. Wu, Y., Kawasaki, F. & Ordway, R.W. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila. J. Neurophysiol. 93, 2396–2405 (2005).

    Article  Google Scholar 

  44. Lou, X., Paradise, S., Ferguson, S.M. & De Camilli, P. Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc. Natl. Acad. Sci. USA 105, 17555–17560 (2008).

    Article  CAS  Google Scholar 

  45. Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).

    Article  CAS  Google Scholar 

  46. von Gersdorff, H. & Matthews, G. Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655 (1994).

    Article  CAS  Google Scholar 

  47. Wu, L.-G., Ryan, T.A. & Lagnado, L. Modes of vesicle retrieval at ribbon synapses, calyx-type synapses and small central synapses. J. Neurosci. 27, 11793–11802 (2007).

    Article  CAS  Google Scholar 

  48. Kimura, M., Saitoh, N. & Takahashi, T. Adenosine A1 receptor–mediated presynaptic inhibition at the calyx of Held of immature rats. J. Physiol. (Lond.) 553, 415–426 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Johnson and S. Takamori for helpful comments. This work was supported by the Core Research for Evolutional Science and Technology of Japan Science and Technology Agency (T.T.), US National Institutes of Health grant EY014043 (H.v.G.) and Grant-in-Aid for Young Scientists from the Japanese Ministry of Education, Culture, Sports, Science and Technology #20700357 (T.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.Y. and T.T. designed the experiments. H.v.G. designed the experiments on nonhydrolysable GTP analogues. T.Y., K.E. and N.S. performed the experiments and analyzed the data. T.Y., H.v.G. and T.T. wrote the manuscript. All of authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Takayuki Yamashita or Tomoyuki Takahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, T., Eguchi, K., Saitoh, N. et al. Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nat Neurosci 13, 838–844 (2010). https://doi.org/10.1038/nn.2576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing