Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex

Abstract

The cerebral cortex has the ability to adapt to altered sensory inputs. In the visual cortex, a small lesion to the retina causes the deprived cortical region to become responsive to adjacent parts of the visual field. This extensive topographic remapping is assumed to be mediated by the rewiring of intracortical connections, but the dynamics of this reorganization process remain unknown. We used repeated intrinsic signal and two-photon imaging to monitor functional and structural alterations in adult mouse visual cortex over a period of months following a retinal lesion. The rate at which dendritic spines were lost and gained increased threefold after a small retinal lesion, leading to an almost complete replacement of spines in the deafferented cortex within 2 months. Because this massive remodeling of synaptic structures did not occur when all visual input was removed, it likely reflects the activity-dependent establishment of new cortical circuits that serve the recovery of visual responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic-signal imaging of the LPZ in mouse visual cortex after focal retinal lesions.
Figure 2: Intrinsic imaging of functional recovery in mouse visual cortex after focal retinal lesions.
Figure 3: Structural reorganization in the visual cortex following retinal lesions.
Figure 4: Increased spine dynamics reflect functional reorganization.
Figure 5: Number of new persistent spines increases with functional recovery.

Similar content being viewed by others

References

  1. Shatz, C.J. & Stryker, M.P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  2. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  3. Hubel, D.H., Wiesel, T.N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).

    Article  CAS  Google Scholar 

  4. Robertson, D. & Irvine, D.R. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282, 456–471 (1989).

    Article  CAS  Google Scholar 

  5. Merzenich, M.M. et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8, 33–55 (1983).

    Article  CAS  Google Scholar 

  6. Kaas, J.H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  CAS  Google Scholar 

  7. Gilbert, C.D. & Wiesel, T.N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  CAS  Google Scholar 

  8. Florence, S.L., Taub, H.B. & Kaas, J.H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    Article  CAS  Google Scholar 

  9. Darian–Smith, C. & Gilbert, C.D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737–740 (1994).

    Article  Google Scholar 

  10. Heinen, S.J. & Skavenski, A.A. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp. Brain Res. 83, 670–674 (1991).

    Article  CAS  Google Scholar 

  11. Calford, M.B., Wright, L.L., Metha, A.B. & Taglianetti, V. Topographic plasticity in primary visual cortex is mediated by local corticocortical connections. J. Neurosci. 23, 6434–6442 (2003).

    Article  CAS  Google Scholar 

  12. Darian–Smith, C. & Gilbert, C.D. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci. 15, 1631–1647 (1995).

    Article  Google Scholar 

  13. Das, A. & Gilbert, C.D. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375, 780–784 (1995).

    Article  CAS  Google Scholar 

  14. Giannikopoulos, D.V. & Eysel, U.T. Dynamics and specificity of cortical map reorganization after retinal lesions. Proc. Natl. Acad. Sci. USA 103, 10805–10810 (2006).

    Article  CAS  Google Scholar 

  15. Eysel, U.T. Functional reconnections without new axonal growth in a partially denervated visual relay nucleus. Nature 299, 442–444 (1982).

    Article  CAS  Google Scholar 

  16. Gilbert, C.D. Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992).

    Article  CAS  Google Scholar 

  17. Hirsch, J.A. & Gilbert, C.D. Long-term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex. J. Physiol. (Lond.) 461, 247–262 (1993).

    Article  CAS  Google Scholar 

  18. Young, J.M. et al. Cortical reorganization consistent with spike timing–, but not correlation-, dependent plasticity. Nat. Neurosci. 10, 887–895 (2007).

    Article  CAS  Google Scholar 

  19. Obata, S., Obata, J., Das, A. & Gilbert, C.D. Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions. Cereb. Cortex 9, 238–248 (1999).

    Article  CAS  Google Scholar 

  20. Van den Bergh, G., Eysel, U.T., Vandenbussche, E., Vandesande, F. & Arckens, L. Retinotopic map plasticity in adult cat visual cortex is accompanied by changes in Ca2+/calmodulin–dependent protein kinase II alpha autophosphorylation. Neuroscience 120, 133–142 (2003).

    Article  CAS  Google Scholar 

  21. Cnops, L., Hu, T.T., Eysel, U.T. & Arckens, L. Effect of binocular retinal lesions on CRMP2 and CRMP4, but not Dyn I and Syt I, expression in adult cat area 17. Eur. J. Neurosci. 25, 1395–1401 (2007).

    Article  Google Scholar 

  22. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  23. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  Google Scholar 

  24. Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E. & Svoboda, K. Experience-dependent and cell type–specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    Article  CAS  Google Scholar 

  25. Majewska, A.K., Newton, J.R. & Sur, M. Remodeling of synaptic structure in sensory cortical areas in vivo. J. Neurosci. 26, 3021–3029 (2006).

    Article  CAS  Google Scholar 

  26. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  CAS  Google Scholar 

  27. Lee, W.C. et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol. 4, e29 (2006).

    Article  Google Scholar 

  28. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hübener, M. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9, 127–132 (2006).

    Article  CAS  Google Scholar 

  29. Chino, Y.M., Smith, E.L., III, Kaas, J.H., Sasaki, Y. & Cheng, H. Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. J. Neurosci. 15, 2417–2433 (1995).

    Article  CAS  Google Scholar 

  30. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  31. Murakami, I., Komatsu, H. & Kinoshita, M. Perceptual filling in at the scotoma following a monocular retinal lesion in the monkey. Vis. Neurosci. 14, 89–101 (1997).

    Article  CAS  Google Scholar 

  32. Horton, J.C. & Hocking, D.R. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture and retinal laser lesions on cytochrome oxidase activity. J. Neurosci. 18, 5433–5455 (1998).

    Article  CAS  Google Scholar 

  33. Smirnakis, S.M. et al. Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435, 300–307 (2005).

    Article  CAS  Google Scholar 

  34. Stepanyants, A., Hof, P.R. & Chklovskii, D.B. Geometry and structural plasticity of synaptic connectivity. Neuron 34, 275–288 (2002).

    Article  CAS  Google Scholar 

  35. Calford, M.B., Schmid, L.M. & Rosa, M.G. Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex. Proc. Biol. Sci. 266, 499–507 (1999).

    Article  CAS  Google Scholar 

  36. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).

    Article  CAS  Google Scholar 

  37. Valverde, F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 3, 337–352 (1967).

    Article  CAS  Google Scholar 

  38. Mataga, N., Mizuguchi, Y. & Hensch, T.K. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004).

    Article  CAS  Google Scholar 

  39. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006).

    Article  CAS  Google Scholar 

  40. Nägerl, U.V., Kostinger, G., Anderson, J.C., Martin, K.A. & Bonhoeffer, T. Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. J. Neurosci. 27, 8149–8156 (2007).

    Article  Google Scholar 

  41. Gilbert, C.D. & Wiesel, T.N. Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex. Nature 280, 120–125 (1979).

    Article  CAS  Google Scholar 

  42. Gilbert, C.D. & Wiesel, T.N. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3, 1116–1133 (1983).

    Article  CAS  Google Scholar 

  43. Martin, K.A. & Whitteridge, D. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J. Physiol. (Lond.) 353, 463–504 (1984).

    Article  CAS  Google Scholar 

  44. Schuett, S., Bonhoeffer, T. & Hübener, M. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci. 22, 6549–6559 (2002).

    Article  CAS  Google Scholar 

  45. Mrsic–Flogel, T.D. et al. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J. Neurosci. 25, 6921–6928 (2005).

    Article  Google Scholar 

  46. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hofer for contributing control data for the Supplementary Discussion. This work was supported by the Max Planck Society (T.K., T.D.M.-F., M.V.A., T.B. and M.H.), the Humboldt Foundation (T.D.M.-F.), the German Research Foundation SFB 509 (U.T.E.) and the Fundação para a Ciência e Tecnologia, Portugal (M.V.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hübener.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keck, T., Mrsic-Flogel, T., Vaz Afonso, M. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci 11, 1162–1167 (2008). https://doi.org/10.1038/nn.2181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing