Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex

Abstract

The population of neurons participating in an epileptiform event varies from moment to moment. Most techniques currently used to localize epileptiform events in vivo have spatial and/or temporal sampling limitations. Here we show in an animal model that optical imaging based on intrinsic signals is an excellent method for in vivo mapping of clinically relevant epileptiform events, such as interictal spikes, ictal onsets, ictal spread and secondary homotopic foci. In addition, a decrease in the optical signal correlates spatially with a decrease in neuronal activity recorded from cortex surrounding an epileptic focus. Optical mapping of epilepsy might be a useful adjunct in the surgical treatment of neocortical epilepsy, which critically depends on the precise localization of intrinsically epileptogenic neurons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical recording of intrinsic signals demonstrate the topography of an interictal focus.
Figure 2: Spike-triggered epilepsy maps can be generated from the time-course of the optical signal.
Figure 3: Spike-triggered inverted optical signal in 'surround' corresponds with neuronal inhibition.
Figure 4: Optical imaging of seizures and homotopic secondary foci.

References

  1. Hauser, W.A. & Hesdorffer, D.C. Epilepsy: Frequency, Causes and Consequences. (Demos, New York, 1990).

    Google Scholar 

  2. Goldensohn, E.S. & Salazar, A.M. Temporal and spatial distribution of intracellular potentials during generation and spread of epileptogenic discharges. Adv. Neurol. 44, 559–582 (1986).

    CAS  PubMed  Google Scholar 

  3. Prince, D.A. & Wilder, J. Control mechanisms in cortical epileptogenic foci. 'Surround' inhibition. Arch. Neurol. 16, 194–202 (1967).

    Article  CAS  Google Scholar 

  4. Buzsáki, G. & Traub, R.D. in Epilepsy: A Comprehensive Textbook (eds. Engel, T.A. & Pedley, T.A.) 819–830 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  5. Duncan, J.S. Imaging and epilepsy. Brain 120, 339–377 (1997).

    Article  Google Scholar 

  6. Bonhoeffer, T. & Grinvald, A. in Brain Mapping. The Methods (eds. Toga, A.W. & Mazziota, J.C.) 55–99 (Academic, San Diego, 1996).

    Google Scholar 

  7. Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991).

    Article  CAS  Google Scholar 

  8. Rubin, B.D. & Katz, L.C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    Article  CAS  Google Scholar 

  9. Quesney, L.F., Cendes, F., Olivier, A., Dubeau, F. & Andermann, F. in Epilepsy and the Functional Anatomy of the Frontal Lobe (eds. Jasper, H.H. & Goldman, R.P.S.) 243–260 (Raven, New York, 1995).

    Google Scholar 

  10. Gumnit, R.J. & Takahashi, T. Changes in direct current activity during experimental focal seizures. Electroencephalogr. Clin. Neurophysiol. 19, 63–74 (1965).

    Article  CAS  Google Scholar 

  11. Szente, M. & Pongracz, F. Aminopyridine-induced seizure activity. Electroencephalogr. Clin. Neurophysiol. 46, 605–608 (1979).

    Article  CAS  Google Scholar 

  12. Stansfeld, C.E., Marsh, S.J., Halliwell, J.V. & Brown, D. 4-Aminopyridine and dendrotoxin induce repetitive firing in rat visceral sensory neurons by slowly inactivating outward current. Neurosci. Lett. 64, 299–304 (1986).

    Article  CAS  Google Scholar 

  13. Engel, J.J., Dichter, M.A. & Schwartzkroin, P.A. in Epilepsy. A Comprehensive Textbook (eds. Engel, J.J. & Pedley, T.A.) 499–512 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  14. Kiper, D.C., Knyazeva, M.G., Tettoni, L. & Innocenti, G.M. Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J. Neurophysiol. 82, 3082–3094 (1999).

    Article  CAS  Google Scholar 

  15. Szente, M.B. & Boda, B. Cellular mechanisms of neocortical secondary epileptogenesis. Brain Res. 648, 203–214 (1994).

    Article  CAS  Google Scholar 

  16. Schwartzkroin, P.A., Futamachi, K.J., Noebels, J.L. & Prince, D.A. Transcallosal effects of a cortical epileptiform focus. Brain Res. 99, 59–68 (1975).

    Article  CAS  Google Scholar 

  17. Orbach, H.S., Cohen, L.B. & Grinvald, A. Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci. 5, 1886–1895 (1985).

    Article  CAS  Google Scholar 

  18. Andrew, R.D. & MacVicar, B.A. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 62, 371–383 (1994).

    Article  CAS  Google Scholar 

  19. Federico, P., Borg, S.G., Salkauskus, A.G. & MacVicar, B.A. Mapping patterns of neuronal activity and seizure propagation in the isolated whole brain of the guinea-pig. Neuroscience 58, 461–480 (1994).

    Article  CAS  Google Scholar 

  20. Haglund, M.M., Ojemann, G.A. & Hochman, D.W. Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358, 668–671 (1992).

    Article  CAS  Google Scholar 

  21. Hochman, D.W., Baraban, S.C., Owens, J.W.M. & Schwartzkroin, P.A. Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270, 99–102 (1995).

    Article  CAS  Google Scholar 

  22. Wieser, H.G., Bancaud, J., Tailarach, J., Bonis, A. & Szikla, G. Comparative value of spontaneous and chemically and electrically induced seizures in establishing the lateralization of temporal lobe seizures. Epilepsia 20, 47–59 (1979).

    Article  CAS  Google Scholar 

  23. Olivier, A. in Contemporary Issues in Neurological Surgery: Surgery for Epilepsy. (eds. Spencer, S.S. & Spencer, D.S.) 150–167 (Blackwell Scientific Publications, Boston, 1991).

    Google Scholar 

  24. Wyler, A.R. & Ward, A.A.J. in Epilepsy: A Window to Brain Mechanisms (eds. Lockard, J.S.S. & Ward, A.A.J.) 51–68 (Raven, New York, 1980).

    Google Scholar 

  25. Ratzlaff, E.H. & Grinvald, A. A tandem-lens epifluorescence macroscope: Hundred-fold brightness advantage for wide-field imaging. J. Neurosci. Methods 36, 127–137 (1991).

    Article  CAS  Google Scholar 

  26. Prince, D.A., Jacobs, K.M., Salin, P.A., Hoffman, S. & Parada, I. Chronic focal neocortical epileptogenesis: Does disinhibition play a role? Can. J. Physiol. Pharmacol. 75, 500–507 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Schütt for contributions to the data analysis; F. Sengpiel and M. Hübener for advice throughout the study and, along with A. Kriegstein, for comments on the manuscript; and V. Staiger, I. Kehrer and F. Brinkmann for providing outstanding technical assistance. This work was supported by the Max-Planck Gesellschaft as well as by grants to T.H.S. from the Epilepsy Foundation of America, the van Wagenen Fellowship of the American Association of Neurological Surgeons and the Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore H. Schwartz.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, T., Bonhoeffer, T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 7, 1063–1067 (2001). https://doi.org/10.1038/nm0901-1063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing