Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus

Abstract

The immunoglobulin κ gene is specifically demethylated during B–cell maturation in a process which utilizes discrete cis–acting modules such as the intronic κ enhancer element and the matrix attachment region (MAR). While any MAR sequence is sufficient for this reaction, mutation analysis indicates that tissue specificity is mediated by κB binding sequences within the κ intronic enhancer. The plasmacytoma cell line S107 lacks κB binding activity and fails to demethylate the κ locus. However, B–cell–specific demethylation is restored by the introduction of an active κB binding protein gene, relB. This represents the first demonstration of a trans–acting factor involved in cell–type–specific demethylation, and suggests that the same protein–DNA recognition system used for transcription may also contribute to the earlier developmental events that bring about activation of the κ locus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714 (1992).

    Article  CAS  Google Scholar 

  2. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  CAS  Google Scholar 

  3. Macleod, D., Charlton, J., Mullins, J. & Bird, A. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    Article  CAS  Google Scholar 

  4. Paroush, Z., Keshet, I., Israeli, J. & Cedar, H. Dynamics of demethylation and activation of the α-actin gene in myoblasts. Cell 63, 1229 (1990).

    Article  CAS  Google Scholar 

  5. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B-cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence. Cell 76, 913–923 (1994).

    Article  CAS  Google Scholar 

  6. Chen, J. & Alt, F.W. Gene rearrangement and B-cell development. Curr. Opin. Immunol. 5, 194–200 (1993).

    Article  CAS  Google Scholar 

  7. Storb, U. & Arp, B. Methylation patters of immunoglobulin genes in lymphoid cells: connection of expression and differentiation with undermethylation. Proc. Natl. Acad. Sci. USA 80, 6642–6646 (1983).

    Article  CAS  Google Scholar 

  8. Mather, E.L. & Perry, R.P. Methylation status and DNasel sensitivity of immunoglobulin genes: changes associated with rearrangement. Proc. Natl. Acad. Sci. USA 78, 2072–2076 (1983).

    Google Scholar 

  9. Kelley, D.E., Pollok, B.A., Atchison, M.L. & Perry, R.P. The coupling between enhancer activity and hypomethylation of κ immunoglobulin genes is developmental regulated. Mol. Cell. Biol. 8, 930–937 (1988).

    Article  CAS  Google Scholar 

  10. Goodhardt, M., Cavelier, P., Doyen, N., Kallenbach, S., Babinet, C. & Rougeon, F. Methylation status of immunoglobulin κ gene segments correlates with their recombination potential. Eur. J. Immunol. 23, 1789–1795 (1993).

    Article  CAS  Google Scholar 

  11. Engler, P. et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65, 120 (1991).

    Article  Google Scholar 

  12. Hsieh, C.-L. & Lieber, M.R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 315–325 (1992).

    Article  CAS  Google Scholar 

  13. Engler, P., Weng, A. & Storb, U. Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol. Cell. Biol. 13, 571–577 (1993).

    Article  CAS  Google Scholar 

  14. Atchison, M.L. & Perry, R.P. The role of kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cell 48, 121–128 (1987).

    Article  CAS  Google Scholar 

  15. Atchison, M.L. & Perry, R.P. Complementation between two cell lines lacking kappa enhancer activity: implications for the developmental control of immunoglobulin transcription. EMBO J. 7, 4213–4220 (1988).

    Article  CAS  Google Scholar 

  16. Klehr, D., Maass, K. & Bode, J. Scaffold-attached regions from three human interferon (β domains can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30, 1264–1270 (1991).

    Article  CAS  Google Scholar 

  17. Mirkovitch, J., Mirautt, M.-E. & Laemmli, U.K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232 (1984).

    Article  CAS  Google Scholar 

  18. Dietz, A., Kay, V., Schlake, T.A., Landsmann, J. & Bode, J. Plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucl. Acids Res. 22, 2744–2751 (1994).

    Article  CAS  Google Scholar 

  19. Cockerill, P.N., Yuen, M.-H. & Garrard, W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262, 5394–5397 (1987).

    CAS  Google Scholar 

  20. Staudt, L.M. & Lenardo, M.J. Immunoglobulin gene transcription. Annu. Rev. Immunol. 9, 373–398 (1991).

    Article  CAS  Google Scholar 

  21. Ernst, P. & Smale, S.T. Combinatorial regulation of transcription II: The immunoglobulin μ heavy chain gene. Immunity 2, 427–438 (1995).

    Article  CAS  Google Scholar 

  22. Ben-Shushan, E., Pikarsky, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol. Cell. Biol. 13, 891–901 (1993).

    Article  CAS  Google Scholar 

  23. Lenardo, M., Pierce, J.W. & Baltimore, D. Protein binding sites in Ig gene enhancers determining transcriptional activity and inducibility. Science 236, 1573–1577 (1987).

    Article  CAS  Google Scholar 

  24. Miyamoto, S. & Verma, I.M. REL/NF-κB/IκB story. Adv. Cancer Res. 66, 255–292 (1995).

    Article  CAS  Google Scholar 

  25. Finco, T.M. & Baldwin, A.S. Mechanistic aspects of NF-κB regulation: The emerging role of phosphorylation and proteolysis. Cell 3, 263–272 (1995).

    CAS  Google Scholar 

  26. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Two regulatory elements for immunoglobulin κ light chain gene expression. Proc. Natl. Acad. Sci. USA 81, 7041–7045 (1984).

    Article  CAS  Google Scholar 

  27. Scott, M.L., Fujita, T., Liou, H.-C., Nolan, G.P. & Baltimore, D. . The p65 subunitof NF-κB regulates IκB by two distinct mechanisms. Genes Dev. 7, 1266–1276 (1993).

    Article  CAS  Google Scholar 

  28. Sun, S.-C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor lκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  Google Scholar 

  29. Baeuerle P.A & Baltimore, D. Activation of DNA binding activity in an apparently cytoplasmic precursor of the NF-icB transcription factor. Cell 53, 211–217 (1988).

    Article  CAS  Google Scholar 

  30. Lernbecher, T., Müller, U. & Wirth, T., NF-κB/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 365, 767–770 (1993).

    Article  CAS  Google Scholar 

  31. Lernbecher,T. Kistler, B. & Wirth, T. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J. 13, 4060–4069 (1994).

    Article  CAS  Google Scholar 

  32. Weih,F. & Carrasco, D. & Bravo, R. Constitutive and inducible Rel/NF-kappa B activities in mouse thymus and spleen. Oncogene 9, 3289–3297 (1994).

    CAS  PubMed  Google Scholar 

  33. Ryseck, R.-P. et al. RelB, a new Rel family transcription activator that can interact with p50 NF-κB. Mol. Cell. Biol. 12, 674–684 (1992).

    Article  CAS  Google Scholar 

  34. Ruben, S.M. et al. 65 κD subunit of NF-κB. Science 251, 1490 (1991).

    Article  CAS  Google Scholar 

  35. Dobrzanski,P, Ryseck R.-P & Bravo, R. Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. EMBO J. 13, 4608–4616 (1994).

    Article  CAS  Google Scholar 

  36. Demengeot, J., Oltz, E.M. & Alt, F.W. Promotion of V(D)J recombinational accessibility by the intronic Eκ element: role of the κB motif. Int. Immunol. 7, 1995–2003 (1995).

    Article  CAS  Google Scholar 

  37. Israel, A. A rote for phosphorylation and degradation in the control of NF-κB activity. Trends Genef. 11, 203–205 (1995).

    Article  CAS  Google Scholar 

  38. Thanos, D. & Maniatis, T. NF-κfi: A lesson in family values. Cell 80, 529–532 (1995).

    Article  CAS  Google Scholar 

  39. Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D. & Miyamoto, S. Rel/NF-κB/lκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).

    Article  CAS  Google Scholar 

  40. Laemmli, U.K., Kas, E., Poljak, L. & Adachi, Y. Scaffold-associated regions: c/s-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev. 2, 275–285 (1992).

    Article  CAS  Google Scholar 

  41. Jenuwein, T.J., Forrester, W.C., Oiu, R.-G. & Grosschedl, R. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7, 2016–2032 (1993).

    Article  CAS  Google Scholar 

  42. Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Dependence of enhancer-mediated transcription of the immunoglobulin μ gene on nuclear matrix attachment regions. Science 265, 1221–1225 (1994).

    Article  CAS  Google Scholar 

  43. Yeivin, A. & Razin, A. Gene methylation patterns and expression in DNA methylation. Molecular biology and biological significance, (eds Jost, J. P. & Saluz, H. R) 524–568 (Birkhauser Veriag Basel, Switzerland, 1993).

    Google Scholar 

  44. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117–125 (1990).

    Article  CAS  Google Scholar 

  45. Chen, J., Young, F., Bottaro, A., Stewart, V., Smith, R.K. .& Alt, F.W. Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO J. 12, 4635–4645 (1993).

    Article  CAS  Google Scholar 

  46. Serwe, M. & Sablitzky, F.V. (D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO J. 12, 2321–2327 (1993).

    Article  CAS  Google Scholar 

  47. Takeda, S., Zou, Y.-R., Bluethmann, H., Kitamura, D., Muller, U. & Rajewsky, K. Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement in c/s but not A, chain gene rearrangement in trans. EMBO J. 12, 2329–2336 (1993).

    Article  CAS  Google Scholar 

  48. Fernex, C., Capone, M. & Ferrier, P. The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol. Cell. Biol. 15, 3217–3226 (1995).

    Article  CAS  Google Scholar 

  49. Hiramatsu, R. et al . The 3′ enhancer region determines the B/T specificity and Pro-B/Pre-B specificity of immunoglobulin Vκ-Jκ joining. Cell 83, 1113–1123 (1995).

    CAS  PubMed  Google Scholar 

  50. Oltz, E. et al. V(D)J recombinase-inducibte B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol. 13, 6223–6230 (1993).

    Article  CAS  Google Scholar 

  51. Sompayrac, L.M. & Danna, K.J. Efficient injection of monkey cells with DNA of simian virus 40. Proc. Natl. Acad. Sci. USA 78, 7575–7578 (1981).

    Article  CAS  Google Scholar 

  52. Wirth, T. & Baltimore, D. Nuclear factor NF-kappa B can interact functionally with its cognate binding site to provide lymphoid-specific promoter function. EMBO J. 7, 3109–3111 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillov, A., Kistler, B., Mostoslavsky, R. et al. A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus. Nat Genet 13, 435–441 (1996). https://doi.org/10.1038/ng0895-435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing