Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons

Abstract

Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor–cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin–syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syntabulin is a microtubule-associated protein in neuronal somata and processes.
Figure 2: DsRed–syntaxin vesicles align with EGFP–syntabulin in COS cells.
Figure 3: DsRed–syntaxin vesicles co-localize with syntabulin and Bassoon and migrate along the neuronal processes.
Figure 4: The syntaxin-binding domain competes with syntabulin for binding to syntaxin.
Figure 5: The SBD blocks the attachment of syntaxin-containing structures to syntabulin.
Figure 6: Overexpression of the syntaxin-binding domain reduces syntaxin-1 distribution in neuronal processes.
Figure 7: siRNA knocks down syntabulin expression and reduces distribution of endogenous syntaxin-1 in neuronal processes.
Figure 8: Conventional kinesin I drives the transport of the syntabulin-linked membrane organelles.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

Data deposits

  • The GenBank accession number for the syntabulin sequence reported in this paper is AY705385.

References

  1. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  2. Bajjalieh, S.M. & Scheller, R.^H. The biochemistry of neurotransmitter secretion. J. Biol. Chem. 270, 1971–1974 (1995).

    Article  CAS  Google Scholar 

  3. Südhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 (1995).

    Article  Google Scholar 

  4. Hilfiker, S., Greengard, P. & Augustine, G.J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nature Neurosci. 2, 104–106 (1999).

    Article  CAS  Google Scholar 

  5. Trimble, W.S., Cowan, D.M. & Scheller, R.H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl Acad. Sci. 85, 4538–4542 (1988).

    Article  CAS  Google Scholar 

  6. Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  7. Yoshida, A., Oho, C., Omori, A., Kuwahara, R., Ito, T. & Takahashi, M. HPC-1 is associated with synaptotagmin and W-conotoxin receptor. J. Biol. Chem. 267, 24925–24928 (1992).

    CAS  PubMed  Google Scholar 

  8. Oyler, G.A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol. 109, 3039–3052 (1989).

    Article  CAS  Google Scholar 

  9. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  10. Calakos, N., Bennett, M.K., Peterson, K. & Scheller, R.H. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146–1149 (1994).

    Article  CAS  Google Scholar 

  11. Fasshauer, D., Eliason, W.K., Brünger, A.T. & Jahn, R. Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37, 10354–10362 (1998).

    Article  CAS  Google Scholar 

  12. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  13. Bradke, F. & Dotti, C.G. Membrane traffic in polarized neurons. Biochem. Biophys. Acta. 1404, 245–258 (1998).

    Article  CAS  Google Scholar 

  14. Goldstein, L.S. & Philp, A.V. The road less travelled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  Google Scholar 

  15. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  Google Scholar 

  16. Shapira, M. et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38, 237–252 (2003).

    Article  CAS  Google Scholar 

  17. Sampo, B., Kaech, S., Kunz, S. & Banker, G. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37, 611–24 (2003).

    Article  CAS  Google Scholar 

  18. Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15, 4328–4342 (1995).

    Article  CAS  Google Scholar 

  19. Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).

    Article  CAS  Google Scholar 

  20. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  21. Roos, J. & Kelly, R.B. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nature Neurosci. 3, 415–417 (2000).

    Article  CAS  Google Scholar 

  22. Almenar-Queralt, A. & Goldstein, L.S. Linkers, packages and pathways: new concepts in axonal transport. Curr. Opin. Neurobiol. 11, 550–557 (2001).

    Article  CAS  Google Scholar 

  23. Schroer, T.A. Motors, clutches and brakes for membrane traffic: a commemorative review in honor of Thomas Kreis. Traffic 1, 3–10 (2000).

    Article  CAS  Google Scholar 

  24. Manning, B.D. & Snyder, M. Drivers and passengers wanted! The role of kinesin-associated proteins. Trends. Cell Biol. 10, 281–289 (2000).

    Article  CAS  Google Scholar 

  25. Goldstein, L.S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  Google Scholar 

  26. Kamal, A., Stokin, G.B., Yang, Z., Xia, C.H. & Goldstein, L.S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459 (2000).

    Article  CAS  Google Scholar 

  27. Bowman, A.B. et al. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594 (2000).

    Article  CAS  Google Scholar 

  28. Nakagawa, T. et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103, 569–581 (2000).

    Article  CAS  Google Scholar 

  29. Takeda, S. et al. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255–1265 (2000).

    Article  CAS  Google Scholar 

  30. Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    Article  CAS  Google Scholar 

  31. Kamal, A. & Goldstein, L.S. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14, 63–68 (2002).

    Article  CAS  Google Scholar 

  32. Lao, G. et al. Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25, 191–201 (2000).

    Article  CAS  Google Scholar 

  33. Das, S., Gerwin, C. & Sheng, Z.-H. Syntaphilin binds to dynamin-1 and inhibits dynamin-dependent endocytosis. J. Biol. Chem. 278, 41221–41226 (2003).

    Article  CAS  Google Scholar 

  34. Muresan, V. et al. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol. Cell. 7, 173–183 (2001).

    Article  CAS  Google Scholar 

  35. Safieddine, S. et al. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol. Cell. Neurosci. 20, 343–353 (2002).

    Article  CAS  Google Scholar 

  36. Garcia, E.P., McPherson, P.S., Chilcote, T.J., Takei, K. & De Camilli, P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 129, 105–20 (1995).

    Article  CAS  Google Scholar 

  37. Diefenbach, R.J., Mackay, J.P., Armati, P.J. & Cunnimgham, A.L. The C-terminal region of the Stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 (1998).

    Article  CAS  Google Scholar 

  38. Gunawardena, S. and Goldstein, L.S. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58, 258–271 (2004).

    Article  CAS  Google Scholar 

  39. Burack, M.A., Silverman, M.A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  Google Scholar 

  40. Sheetz, M.P., Pfister, K.K., Bulinski, J.C. & Cotman, C.W. Mechanisms of trafficking in axons and dendrites: implications for development and neurodegeneration. Prog. Neurobiol. 55, 577–594 (1998).

    Article  CAS  Google Scholar 

  41. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  42. Horton, A.C. and Ehlers, M.D. Neuronal polarity and trafficking. Neuron 40, 277–295 (2003).

    Article  CAS  Google Scholar 

  43. Donaldson, J.G. and Lippincott-Schwartz, J. Sorting and Signaling at the Golgi complex. Cell 101, 693–696 (2000).

    Article  CAS  Google Scholar 

  44. Allan, V.J., Thompson, H.M. & McNiven, M.A. Motoring around the Golgi. Nature Cell Biol. 4, 236–242 (2002).

    Article  Google Scholar 

  45. Dell, K.R. Dynactin polices two-way organelle traffic. J. Cell Biol. 160, 291–293 (2003).

    Article  CAS  Google Scholar 

  46. Verhey, K.J. et al. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959–970 (2001).

    Article  CAS  Google Scholar 

  47. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  Google Scholar 

  48. Goslin, K., Asmussen, H. & Banker, G. in Culturing Nerve Cells 2nd edn (eds Banker, G. and Goslin, K.) 339–370 (M.I.T. Press, Cambridge, USA, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank the following people for their help: K. J. Swartz, C. Blackstone and C. T. Yokoyama for their critical reading of the manuscript; P. De Camilli, J. Lippincott-Schwartz and members of the Sheng laboratory for discussion; L. S. Goldstein for GST–KLC constructs and R. J. Diefenbach for His–KHC DNAs; M. Takahashi for SNARE antibodies; J. W. Nagle for DNA sequencing; S. Cheng for her assistance in EM examination; and J. Kang for image analysis. This work was supported by intramural research program of NINDS, NIH (Z.-H.S.). Q.C. is a graduate student of the NIH-SSMU (Shanghai Second Medical University) Joint Ph.D. Program in Neuroscience partially supported by the Shanghai Science Technology Development Foundation (01JC4023). We acknowledge P.-H. Lu for her support to the joint NIH-SSMU training program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hang Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Q., Cai, Q., Gerwin, C. et al. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6, 941–953 (2004). https://doi.org/10.1038/ncb1169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing