Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice

Abstract

Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer–derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into γ-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell–derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell–derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MS5-induced neural differentiation of mouse ES cells.
Figure 2: Astrocytic and oligodendrocytic differentiation.
Figure 3: Neuronal fate specification.
Figure 4: Schematic representation of culture conditions.
Figure 5: Variability of dopamine (DA) neuron differentiation and in vitro function of ES cell–derived neurons.
Figure 6: In vivo function of ES cell–derived neurons.

Similar content being viewed by others

References

  1. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D.G. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M. & McKay, R.D.G. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Brustle, O. et al. Embryonic stem cell–derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, J.H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Itoh, K. et al. Reproducible establishment of hematopoietic supportive stromal cell-lines from murine bone-marrow. Exp. Hematol. 17, 145–153 (1989).

    CAS  PubMed  Google Scholar 

  10. Collins, L.S. & Dorshkind, K. A stromal cell-line from myeloid long-term bone-marrow cultures can support myelopoiesis and B-lymphopoiesis. J. Immunol. 138, 1082–1087 (1987).

    CAS  PubMed  Google Scholar 

  11. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Johe, K.K., Hazel, T.G., Müller, T., Dugich-Djordjevic, M.M. & McKay, R.D.G. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Studer, L., Tabar, V. & McKay, R.D. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Yan, J., Studer, L. & McKay, R.D.G. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor–expanded mesencephalic precursors. J. Neurochem. 76, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 8, 957–966 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki, H. et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell–derived inducing activity. Proc. Natl. Acad. Sci. USA 99, 1580–1585 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cibelli, J.B. et al. Parthenogenetic stem cells in nonhuman primates. Science 295, 819 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Munoz-Sanjuan, I. & Brivanlou, A.H. Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis (Review). Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Wilson, S.W. & Rubenstein, J.L.R. Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sanchez-Pernaute, R., Studer, L., Bankiewicz, K.S., Major, E.O. & McKay, R.D. In vitro generation and transplantation of precursor-derived human dopamine neurons. J. Neurosci. Res. 65, 284–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Ling, Z.D., Potter, E.D., Lipton, J.W. & Carvey, P.M. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol. 149, 411–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653–659 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Bjorklund, L.M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zawada, W.M. et al. Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat. Med. 4, 569–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Keller, G.M. In-vitro differentiation of embryonic stem-cells. Curr. Opin. Cell Biol. 7, 862–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, M.J. et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood 92, 2032–2040 (1998).

    CAS  PubMed  Google Scholar 

  31. Studer, L. et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res. Bull. 41, 143–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Battisti, J.J., Uretsky, N.J. & Wallace, L.J. Sensitization of apomorphine-induced stereotyped behavior in mice is context dependent. Psychopharmacology (Berl.) 146, 42–48 (1999).

    Article  CAS  Google Scholar 

  33. Winkler, J.D. & Weiss, B. Reversal of supersensitive apomorphine-induced rotational behavior in mice by continuous exposure to apomorphine. J. Pharmacol. Exp. Ther. 238, 242–247 (1996).

    Google Scholar 

  34. Barneoud, P. et al. Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience 67, 837–848 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Gundersen, H.J.G. et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96, 379–394 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. McKay for the Nestin antibody, A. Nagy for the ESB5 cell line, T. Wakayama for the ntES cell lines and E. Lai for the BF1/lacZ ES line. We also thank A. Saxena, P. Song and V. Pratomo for excellent technical assistance, K. Weisel for providing AGM stromal cell lines and R. Stan for a critical review of the manuscript. This work was supported in part by research grants 01.2001.011 and 01.2002.07 from the Michael J. Fox Foundation for Parkinson's Research, and by National Institute of Neurological Disorders and Stroke–National Institutes of Health grant 1R21NS44231-01, as well as by The Parkinson Disease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Studer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barberi, T., Klivenyi, P., Calingasan, N. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21, 1200–1207 (2003). https://doi.org/10.1038/nbt870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing