Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The disparity between human cell senescence in vitro and lifelong replication in vivo

Abstract

Cultured human fibroblasts undergo senescence (a loss of replicative capacity) after a uniform, fixed number of 50 population doublings, commonly termed the Hayflick limit. It has been long known from clonal and other quantitative studies, however, that cells decline in replicative capacity from the time of explantation and do so in a stochastic manner, with a half-life of only 8 doublings. The apparent 50-cell doubling limit reflects the expansive propagation of the last surviving clone. The relevance of either figure to survival of cells in the body is questionable, given that stem cells in some renewing tissues undergo >1,000 divisions in a lifetime with no morphological sign of senescence. Oddly enough, these observations have had little if any effect on general acceptance of the Hayflick limit in its original form. The absence of telomerase in cultured human cells and the shortening of telomeres at each population doubling have suggested that telomere length acts as a mitotic clock that accounts for their limited lifespan. This concept assumed an iconic character with the report that ectopic expression of telomerase by a vector greatly extended the lifespan of human cells. That something similar might occur in vivo seemed consistent with initial reports that most human somatic tissues lack telomerase activity. More careful study, however, has revealed telomerase activity in stem cells and some dividing transit cells of many renewing tissues and even in dividing myocytes of repairing cardiac muscle. It now seems likely that telomerase is active in vivo where and when it is needed to maintain tissue integrity. Caution is recommended in applying telomerase inhibition to kill telomerase-expressing cancer cells, because it would probably damage stem cells in essential organs and even increase the likelihood of secondary cancers. The risk may be especially high in sun-exposed skin, where there are usually thousands of p53-mutant clones of keratinocytes predisposed to cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The end-replication problem of the telomere of chromosomal DNA.

Similar content being viewed by others

References

  1. Yates, F.E. & Benton, L.A. Loss of integration and resiliency with age: a dissipative destruction. in Handbook of Physiology. A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts (ed. Masoro, E.J.). 591–610 (Oxford University Press, New York, 1955).

    Google Scholar 

  2. Hayflick, L. & Moorhead, P. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Rohme, D. Evidence for a relationship between longevity of mammalian species and lifespans of normal fibroblasts in vitro and erythrocytes in vivo. Proc. Natl. Acad. Sci. USA 78, 5009–5013 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rubin, H. Cell aging in vivo and in vitro. Mech. Ageing Dev. 98, 1–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Cristofalo, V.J. & Sharf, B.B. Cellular senescence and DNA synthesis. Thymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76, 419–427 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, G.M., Sprague, C.A., Norwood, T.H. & Pendergrass, W.R. Clonal selection, attenuation and differentiation in an in vitro model of hyperplasia. Am J. Pathol. 74, 137–154 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, J.R. & Hayflick, L. Variation in the life-span of clones derived from human diploid cell strains. J. Cell Biol. 62, 48–53 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabinovitch, P.S. Regulation of human fibroblast growth rate by both non-cycling cell fraction and transition probability is shown by growth in 5-bromodeoxyuridine followed by Hoechst 33258 flow cytometry. Proc. Natl. Acad. Sci. USA 80, 2951–2955 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pontén, J., Stein, W. & Shall, S. A quantitative analysis of the aging of human glial cells in culture. J. Cell. Physiol. 117, 342–352 (1983).

    Article  PubMed  Google Scholar 

  11. McCarron, M. et al. Effect of age on lymphocyte proliferation. Mech. Ageing Dev. 41, 211–218 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Potten, C.S. & Morris, R.J. Epithelial cells in vivo. J. Cell Sci. Suppl. 10, 45–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Severino, J., Allen, R.G., Balin, S., Balin, A. & Cristofalo, V.J. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res. 257, 162–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J.R. & Whitney, J.R. Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207, 82–84 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Cristofalo, V.J., Allan, R.G., Pignolo, R.J., Martin, B.G. & Beck, J.C. Relationship between donor age and replicative lifespan in culture, a reevaluation. Proc. Natl. Acad. Sci. USA 95, 10614–10619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stanley, J.F., Pye, D. & MacGregor, A. Comparison of doubling numbers attained by cultured animal cells with life span of species. Nature 255, 158–159 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Greider, C.W. Cellular responses to telomere shortening: cellular senescence as a tumor suppressor mechanism. in The Harvey Lectures. (Wiley-Liss, New York, in press, 2002).

    Google Scholar 

  18. Soukupova, M., Holeckova, E. & Hnevkovsky, P. Changes of the latent period of explanted tissues during ontogenesis. in Aging in Cell and Tissue Culture (eds Holeckova, E. & Cristofalo, V.J.) pp.41–56 (Plenum Press, New York, 1970).

    Chapter  Google Scholar 

  19. Cameron, I.L. Cell proliferation and renewal in aging mice. J. Gerontol. 27, 162–172 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Lesher, S., Fry, R.J.M. & Kohn, H.I. Age and the generation time of the mouse duodenal epithelial cell. Exp. Cell Res. 24, 334–343 (1961).

    Article  CAS  PubMed  Google Scholar 

  21. Fry, R.J.M., Tyler, S.A. & Lesher, S. Relationships between age and variability. in Radiation and Ageing (eds Lindop, P.J. & Sacher, G.A.). 43–55 (Taylor & Francis, Semmering, Austria, 1966).

    Google Scholar 

  22. Pendergrass, W.R., Li, Y., Jiang, D., Fei, R.G. & Wolf, N.S. Caloric restriction: conservation of cellular replicative capacity in vitro accompanies life-span extension in mice. Exp. Cell Res. 217, 309–316 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Schneider, E.L. & Mitsui, Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA 73, 3584–3588 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olovnikov, A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Theor. Biol. 41, 181–190 (1973).

    Article  CAS  Google Scholar 

  25. Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W. & Harley, C.B. Telomere end replication problem and cell aging. J. Mol. Biol. 225, 951–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Harley, C.B., Vaziri, H., Counter, C.M. & Allsopp, R.C. The telomere hypothesis of cellular aging. Exp. Gerontol. 27, 375–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Blackburn, E. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, J. et al. Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 274, 26141–26148 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oullette, M.M. et al. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076 (2000).

    Article  Google Scholar 

  33. Sherr, C.J. & De Pinho, R.A. Cellular senescence: mitotic clock or culture shock. Cell 102, 407–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Tang, D.G., Takumoto, Y.M., Apperly, J.A., Lloyd, A.C. & Raff, M.C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291, 868–871 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Mathon, N.F., Malcolm, D.S., Harrisingh, M.C., Cheng, L. & Lloyd, A.C. Lack of replicative senescence in normal rodent glia. Science 291, 872–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Shay, J. & Wright, W.E. When do telomeres matter? Science 291, 839–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rubin, H. Telomerase and cellular lifespan: ending the debate? Nat. Biotechnol. 16, 396–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Rubin, H. Harry Rubin replies. Nat. Biotechnol. 17, 313–314 (1999).

    Article  CAS  Google Scholar 

  39. Prowse, K.R. & Greider, C.W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl. Acad. Sci. USA 92, 4818–4822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bryan, T.M., Englezon, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang, M.K., Guo, W. & Park, N.-H. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Cell Growth Diff. 9, 85–95 (1998).

    CAS  PubMed  Google Scholar 

  43. Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21 CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Sugrue, M.M., Shin, D.Y., Lee, S.W. & Aaronson, S.A. Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci. USA 94, 9648–9653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Broccoli, D., Young, J.W. & de Lange, T. Telomerase in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. USA 92, 9083–9086 (1995).

    Article  Google Scholar 

  46. Counter, C.M., Gupta, J., Harley, C.B., Leber, B. & Bacchetti, S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85, 2315–2320 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Hiyama, K. et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715 (1995).

    CAS  PubMed  Google Scholar 

  48. Buchkovich, K.J. & Greider, C.W. Telomerase regulation during entry into the cell cycle in normal human T cells. Mol. Biol. Cell 7, 1443–1454 (1995).

    Article  Google Scholar 

  49. Kyo, S., Takakura, M., Kohama, T. & Masaki, I. Telomerase activity in human endometrium. Cancer Res. 57, 610–614 (1997).

    CAS  PubMed  Google Scholar 

  50. Belair, C.D., Yeager, T.R., Lopez, P.M. & Reznikoff, C.A. Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc. Natl. Acad. Sci. USA 94, 13677–13682 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yasumoto, S. et al. Telomerase activity in normal epithelial cells. Oncogene 13, 433–439 (1996).

    CAS  PubMed  Google Scholar 

  52. Jones, P.H. & Watt, F.M. Stem cell patterning and fate in human epidermis. Cell 80, 83–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Harle-Bachor, C. & Boukamp, P. Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl. Acad. Sci. USA 93, 6476–6481 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramirez, R.D., Wright, W.E., Shay, J.W. & Taylor, R.S. Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Invest. Dermatol. 198, 113–117 (1997).

    Article  Google Scholar 

  55. Cotsarelis, G., Sun, T.-T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Hiyama, E. et al. Telomerase activity in human intestine. Intl. J. Oncology 9, 453–458 (1996).

    CAS  Google Scholar 

  57. Leri, A. et al. Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc. Natl. Acad. Sci. USA 98, 8626–8631 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greider, C.W. Telomerase activity, cell proliferation and cancer. Proc. Natl. Acad. Sci. USA 95, 90–92 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Venkatesan, R.N. & Price, C. Telomerase expression in chickens: constitutive activity in somatic tissues and down regulation in culture. Proc. Natl. Acad. Sci. USA 95, 14763–14768 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lieberman, I. & Ove, P. Enzyme activity levels in mammalian cell cultures. J. Biol. Chem. 233, 634–636 (1958).

    Article  CAS  PubMed  Google Scholar 

  61. Burlington, H. Enzyme patterns in cultured kidney cells. Am. J. Physiol. 197, 68–70 (1959).

    Article  CAS  PubMed  Google Scholar 

  62. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frenck, R.W., Blackburn, E.H. & Shannon, K.M. The rate of telomerase sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA 95, 5607–5610 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kveiborg, M. et al. Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech. Ageing Dev. 106, 261–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Wright, N. & Alison, M. The Biology of Epithelial Cell Populations (Clarendon Press, Oxford; 1984).

    Google Scholar 

  67. Potten, C.S., Wichmann, H.E., Loeffler, M., Dobek, K. & Major, D. Evidence for discrete cell kinetic subpopulations in mouse epidermis based on mathematical analysis. Cell Tiss. Kinet. 15, 305–329 (1982).

    CAS  Google Scholar 

  68. Morris, R.J., Fischer, S.M. & Slaga, T.J. Evidence that centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol. 84, 277–281 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Vulliamy, T.J., Knight, S.W., Mason, P.J. & Dokal, I. Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol. Dis. 27, 353–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Vulliamy, T.J. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Marciniak, R. & Guarente, L. Testing telomerase. Nature 413, 370–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Harley, C.B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harbor Symp. Quant. Biol. 59, 307–315 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Holt, S.E., Wright, W.E. & Shay, J.W. Multiple pathways for the regulation of telomerase activity. Eur. J. Cancer 33, 761–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse fibroblasts lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Rudolph, K.L. et al. Longevity, stress response and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Artandi, S.E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Jonason, A.S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl. Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, W., Remenyik, E., Zelterman, D., Brash, D.E. & Wikonkai, N.M. Escaping the stem cell compartment: sustained UVB exposure allows mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl. Acad. Sci. USA 98, 13948–13953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Naasani, I., Seimiya, H., Yamori, T. & Tsuruo, T. FJ5002: A potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 59, 4004–4011 (1999).

    CAS  PubMed  Google Scholar 

  82. Kondo, S., Kondo, Y., Li, G., Silverman, R.H. & Cowell, J.K. Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene 16, 3323–3330 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Hahn, W.C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, X., Mar, V., Zhou, W., Harrington, L. & Robinson, M.O. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 13, 2388–2399 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, M.M. et al. A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation. Proc. Natl. Acad. Sci. USA 98, 7982–7987 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Todaro, G.J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Merz, G.S., Jr. & Ross, J.D. Clone size variation in the human diploid cell strain W1–38. J. Cell Physiol. 82, 75–80 (1973).

    Article  PubMed  Google Scholar 

  88. Absher, P.M. & Absher, R.G. Clonal variation and aging of diploid fibroblasts. Exp. Cell Res. 103, 247–255 (1976).

    Article  CAS  PubMed  Google Scholar 

  89. Wright, W.E. & Shay, J.W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Holliday, R. Endless quest. BioEssays 18, 3–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Martin, G.M., Sprague, C.A., & Epstein, C.J. Replicative lifespan of cultivated human cells: effect of donor age, tissue and genotype. Lab. Invest. 23, 86–92 (1970).

    CAS  PubMed  Google Scholar 

  92. Rubin, H. Rubin replies. Nat. Biotechnol. 16, 702 (1998).

  93. de Lange, T. Telomeres and senescence: ending the debate. Science 279, 334–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Zijlmans, J.M. et al. Telomeres in mouse have large interchromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hemann, M.T. & Greider, C. Wild-derived inbred mouse strains have short telomeres. Nucleic Acid Res. 28, 4474–4478 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Robbins, E., Levine, E.M. & Eagle, H. Morphological changes accompanying senescence of cultured human diploid cells. J. Exp. Med. 131, 1211–1222 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hart, R.W. & Setlow, R.B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71, 2169–2173 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hamilton, M.L. et al. Does oxidative damage to DNA increase with age? Proc. Natl. Acad. Sci. USA. 98, 10469–10474 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Valuable comments on the manuscript were made by Elizabeth Blackburn, Kathleen Collins, Vincent Cristofalo, Peter Rabinovitch, and Kevin Shannon. Dorothy Rubin transcribed and helped edit the manuscript. The research was supported by the Elsasser Family Fund and by National Institutes of Health grant DI3LM07483..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 20, 675–681 (2002). https://doi.org/10.1038/nbt0702-675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0702-675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing