Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the Tα1 tubulin promoter

Abstract

Neuronal precursor cells are widespread in the forebrain ventricular/subventricular zone, and may provide a cellular substrate for brain repair. Clonal lines derived from single progenitors can become progressively less representative of their parental precursors with time and passage in vitro. We have developed an alternative strategy for the isolation and enrichment of precursor cells, by fluorescence-activated cell sorting of forebrain cells transfected with the gene for green fluorescent protein, driven by the neuronal Tα1 tubulin promoter. Using this approach, neural precursors and young neurons can be identified and selectively harvested from a variety of samples, including both avian and mammalian forebrains at different developmental stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldman, S.A. 1995. Neuronal precursor cells and neurogenesis in the adult fore-brain. The Neuroscientist 1:338–350.

    Article  CAS  Google Scholar 

  2. Goldman, S.A. 1997. Comparative strategies of subependymal neurogenesis in the adult forebrain. in Isolation, characterization and utilization ofCNS stem cells. 43–65 Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  3. Weiss, S., Reynolds, B.A., Vescovi, A.L., Morshead, C., Craig, C.G., and van der Kooy, D. 1996. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19:387–393.

    Article  CAS  Google Scholar 

  4. Goldman, S.A. and Nottebohm, F. 1983. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA 80:2390–2394.

    Article  CAS  Google Scholar 

  5. Goldman, S.A. 1990. Neuronal development and migration in explant cultures of the adult canary forebrain. J. Neurosci. 10:2931–2939.

    Article  CAS  Google Scholar 

  6. Lois, C. and Alvarez-Buylla, A. 1993. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90:2074–2077.

    Article  CAS  Google Scholar 

  7. Luskin, M.B. 1993. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189.

    Article  CAS  Google Scholar 

  8. Kirschenbaum, B., Nedergaard, M., Preuss, A., Barami, K., Fraser, R.A., and Goldman, S.A. 1994. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cerebral Cortex 4:576–589.

    Article  CAS  Google Scholar 

  9. Kirschenbaum, B. and Goldman, S.A. 1995. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92:210–214.

    Article  CAS  Google Scholar 

  10. Morshead, C.M., Reynolds, B.A., Craig, C.G., McBurney, M.W., Staines, W.A., Morassutti, D., et al. 1994. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:–1082.

    Article  Google Scholar 

  11. Luskin, M., Zigova, T., Soteres, B., and Stewart, R. 1997. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express neuronal phenotype. Mol. Cell. Neurosci. 8:351–366.

    Article  CAS  Google Scholar 

  12. Pincus, D.W., Harrison, C., Goodman, R.R., Edgar, M., Keyoung, H., Fraser, R.A.R., et al. 1997. FGF2/BDNF-responsive neuronal progenitor cells in the adult human subependyma. Ann. Neurol. In press.

  13. Palmer, T.D., Ray, J., and Gage, F.H. 1995. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6:474–486.

    Article  CAS  Google Scholar 

  14. Richards, L.J., Kilpatrick, T.J., and Bartlett, P.F. 1992. De novo generation of neuronal cells from the adult mouse brain. Proc. Natl. Acad. Sci. USA 89:8591–8595.

    Article  CAS  Google Scholar 

  15. Reynolds, B.A. and Weiss, S. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.

    Article  CAS  Google Scholar 

  16. Gritti, A., Parati, E.A., Cova, L, Frolichsthal, R, Galli, R., Wanke, E., et al. 1996. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16:1091–1100.

    Article  CAS  Google Scholar 

  17. Vescovi, A.L, Reynolds, B.A., Fraser, D.D., and Weiss, S. 1993. BFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966.

    Article  Google Scholar 

  18. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M., and McKay, R.D. 1996. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10:3129–3140.

    Article  CAS  Google Scholar 

  19. Goldman, S.A., Zukhar, A., Barami, K., Mikawa, T., and Niedzwiecki, D. 1996. Ependymal/subependymal cells of the postnatal and adult songbird brain generate both neurons and non-neuronal siblings, in vitro and in vivo. J. Neurobiol. 30:505–520.

    Article  CAS  Google Scholar 

  20. Goldman, S., Kirschenbaum, B., and Harrison, C. 1997. Neuronal precursor cells of the adult rat ventricular zone persist into senescence, with no change in spatial extent or BDNF response. J. Neurobiol. 32:554–566.

    Article  CAS  Google Scholar 

  21. Goldman, S.A. and Nedergaard, M. 1992. Newly generated neurons of the adult songbird brain become functionally active in long-term culture. Dev. BrainResearch 68:217–223.

    CAS  Google Scholar 

  22. Weiss, S., Dunne, C., Hfwson, J., Wohl, C., Wheatley, M., Peterson, A.C., and Reynolds, B.A. 1996. Mpipotent CNS stem cells are present in the adult mammalian spinal cord and v|ntricular neuroaxis. J. Neurosci. 16:7599–7609.

    Article  CAS  Google Scholar 

  23. Morshead, C. and van d|r Kooy, D. 1992. Postmitotic death is the fate of consti-tutively proliferating cell in the subependymal layer of the adult mouse brain. J. Neurosci. 12:249–256.

    Article  CAS  Google Scholar 

  24. Miller, R, Naus, C., Dura^KJ, M., Bloom, F,. and Milner, R. 1987. Isotypes of a-tubu-lin are differentially regulated during neuronal maturation. J. Cell Biol. 105:3065–3073.

    Article  CAS  Google Scholar 

  25. Miller, R, Tetzlaff, W., Biifey, M., Fawcett, J., and Milner, R. 1989. Rapid induction of the major embryonic JHubulin mRNA, Ta1, during nerve regeneration in adult rats. J. Neurosci. 9:1452–l463.

    Article  CAS  Google Scholar 

  26. Gloster, A., Wu, W., ], A., Weiss, S., Causing, C., Pozniaj, C., et al. 1994. The Ta1 a-tubulin prom||er specifies gene expression as a function of neuronal growth and regeneration transgenic mice. J. Neurosci. 14:7319–7330.

    Article  CAS  Google Scholar 

  27. Chalfie, M., Tu, Y, Euskilfehen, G., Ward, W., and Prasher, D. 1994. Green fluorescent protein as a markeif for gene expression. Science 263:802–805.

    Article  CAS  Google Scholar 

  28. Heim, R. and Tsien, R. 1906. Engineering green fluorescence protein for improved brightness, longer wavejlngths and energy transfer. Current Biol. 6:178–183.

    Article  Google Scholar 

  29. Levy, J., Muldoon, R., S>lotukhin, S., and Link, C. 1996. Retroviral transfer and expression of a humanized, red–shifted green fluorescent protein gene into human tumor cells. Bio/Technology 14:610–614.

    CAS  Google Scholar 

  30. Bailey, K., Drago, J., andSartlett, P. 1994. Neuronal progenitors identified by their inability to express class 1 histocompatibility antigens in response to interferon-g. J. Neurosci. Res. 39:166–177.

    Article  CAS  Google Scholar 

  31. Vaysse, P. and Goldman, J. 1990. A clonal analysis of glia lineages in neonatal forebrain development in vitro. Neuron 5:227–235.

    Article  CAS  Google Scholar 

  32. Szabo, A., Dalmau, J., Hanley, G., Rosenfeld, M., Posner, J., and Furneaux, H. 1991. HuD, a paraneoplfiistic encephalomyelitis antigen, contains RNA binding domains and is homologous to elav and sex-lethal. Cell 67:325–333.

    Article  CAS  Google Scholar 

  33. Marusich, M. and Westoh, J. 1992. Identification of early neurogenic cells in the neural crest lineage. De^Biol. 149:295–306.

    Article  CAS  Google Scholar 

  34. Barami, K., Iversen, K., iurneaux, H., and Goldman, S.A. 1995. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J. Neurobiol. 28:82–101.

    Article  CAS  Google Scholar 

  35. Lee, M., Rebhun, L., and Frankfurter, A. 1990. Posttranslational modification of class III β-tubulin. Proc. Natl. Acad. Sci. USA 87:7195–7199.

    Article  CAS  Google Scholar 

  36. Menezes, J.R. and Luskin, M.B. 1994. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telen-cephalon. J. Neurosci. 11:5399–5416.

    Article  Google Scholar 

  37. Lemmon, V. 1985. Monoclonal antibodies specific for glia in the chick central nervous system. Dev. Brain Research 23:111–120.

    Article  Google Scholar 

  38. Goldman, S.A., Lemmon, V., and Chin, S.S. 1993. Migration of newly generated neurons upon ependymally derived radial guide cells in explant cultures of the adult songbird forebrain. Glia 8:150–160.

    Article  CAS  Google Scholar 

  39. Frederiksen, K. and McH|iy, R.D. 1988. Proliferation and differentiation of rat neu-roepithelial precursor eels in vivo. J. Neurosci. 8:1144–1151.

    Article  CAS  Google Scholar 

  40. Clark, S., Shetty, A., BraSHey, J. and Turner, D. 1994. Reactive astrocytes express the embryonic intermediate neurofilament nestin. NeuroReport. 5:1885–1888.

    Article  Google Scholar 

  41. Bansal, R., Lemmon, V, Gard, A., Ranscht, B., and Pfeiffer, S. 1989. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-Mab, in the analysis of oligodendrocyte development. J. Neurosci. Res. 24:548–557.

    Article  CAS  Google Scholar 

  42. McCoy, J.P., Chambers, W., Lakomy, R., Campbell, J., and Stewart, C. 1991. Sorting minor subpopuliftions of cells: Use of fluorescence as the triggering signal. Cytometry 12:268–274.

    Article  Google Scholar 

  43. Nedergaard, M., Goldrrtim, S., Desai, S., and Pulsinelli, W. 1991. Acid-induced death in neurons and glto. J. Neurosci. 11:2489–2497.

    Article  CAS  Google Scholar 

  44. Goldman, S.A., Zarembii, A., and Niedzwiecki, D. 1992. In vitro neurogenesis by neuronal precursor cells derived from the adult songbird brain. J. Neurosci. 12:2532–2541.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Wu, H., Jiang, J. et al. Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the Tα1 tubulin promoter. Nat Biotechnol 16, 196–201 (1998). https://doi.org/10.1038/nbt0298-196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0298-196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing