Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amygdala intercalated neurons are required for expression of fear extinction

Abstract

Congruent findings from studies of fear learning in animals and humans indicate that research on the circuits mediating fear constitutes our best hope of understanding human anxiety disorders1,2,3,4. In mammals, repeated presentations of a conditioned stimulus that was previously paired to a noxious stimulus leads to the gradual disappearance of conditioned fear responses. Although much evidence suggests that this extinction process depends on plastic events in the amygdala1,2,3,4,5,6,7, the underlying mechanisms remain unclear. Intercalated (ITC) amygdala neurons constitute probable mediators of extinction because they receive information about the conditioned stimulus from the basolateral amygdala (BLA)8,9, and contribute inhibitory projections to the central nucleus (CEA)10,11, the main output station of the amygdala for conditioned fear responses12. Thus, after extinction training, ITC cells could reduce the impact of conditioned-stimulus-related BLA inputs to the CEA by means of feed-forward inhibition. Here we test the hypothesis that ITC neurons mediate extinction by lesioning them with a toxin that selectively targets cells expressing µ-opioid receptors (µORs). Electron microscopic observations revealed that the incidence of µOR-immunoreactive synapses is much higher in ITC cell clusters than in the BLA or CEA and that µORs typically have a post-synaptic location in ITC cells. In keeping with this, bilateral infusions of the µOR agonist dermorphin conjugated to the toxin saporin in the vicinity of ITC neurons caused a 34% reduction in the number of ITC cells but no significant cell loss in surrounding nuclei. Moreover, ITC lesions caused a marked deficit in the expression of extinction that correlated negatively with the number of surviving ITC neurons but not CEA cells. Because ITC cells exhibit an unusual pattern of receptor expression, these findings open new avenues for the treatment of anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: µOR immunoreactivity in the amygdala.
Figure 2: D-Sap infusions at BLA–CEA border cause a spatially circumscribed loss of µOR immunoreactivity.
Figure 3: D-Sap-induced ITC lesions cause an extinction deficit.

Similar content being viewed by others

References

  1. Myers, K. M. & Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007)

    Article  CAS  Google Scholar 

  2. Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005)

    Article  CAS  Google Scholar 

  3. Quirk, G. J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008)

    Article  Google Scholar 

  4. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007)

    Article  CAS  Google Scholar 

  5. Falls, W. A., Miserendino, M. J. D. & Davis, M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J. Neurosci. 12, 854–863 (1992)

    Article  CAS  Google Scholar 

  6. Sotres-Bayon, F., Bush, D. E. & LeDoux, J. E. Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32, 1929–1940 (2007)

    Article  CAS  Google Scholar 

  7. Walker, D. L., Ressler, K. J., Lu, K. T. & Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-Cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22, 2343–2351 (2002)

    Article  CAS  Google Scholar 

  8. Marowsky, A., Yanagawa, Y., Obata, K. & Vogt, K. E. A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48, 1025–1037 (2005)

    Article  CAS  Google Scholar 

  9. Royer, S., Martina, M. & Paré, D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J. Neurosci. 19, 10575–10583 (1999)

    Article  CAS  Google Scholar 

  10. Paré, D. & Smith, Y. Distribution of GABA immunoreactivity in the amygdaloid complex of the cat. Neuroscience 57, 1061–1076 (1993)

    Article  Google Scholar 

  11. Paré, D. & Smith, Y. The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57, 1077–1090 (1993)

    Article  Google Scholar 

  12. Davis, M. in The Amygdala: A Functional Analysis (ed. Aggleton, J. P.) 213–287 (Oxford Univ. Press, 2000)

    Google Scholar 

  13. Royer, S. & Paré, D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115, 455–462 (2002)

    Article  CAS  Google Scholar 

  14. Jacobsen, K. X., Hoistad, M., Staines, W. A. & Fuxe, K. The distribution of dopamine D1 receptor and mu-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 141, 2007–2018 (2006)

    Article  CAS  Google Scholar 

  15. Poulin, J. F., Chevalier, B., Laforest, S. & Drolet, G. Enkephalinergic afferents of the centromedial amygdala in the rat. J. Comp. Neurol. 496, 859–876 (2006)

    Article  Google Scholar 

  16. Wiley, R. G. & Lappi, D. A. Targeted toxins in pain. Adv. Drug Deliv. Rev. 55, 1043–1054 (2003)

    Article  CAS  Google Scholar 

  17. Gaudriault, G., Nouel, D., Dal Farra, C., Beaudet, A. & Vincent, J. P. Receptor-induced internalization of selective peptidic mu and delta opioid ligands. J. Biol. Chem. 272, 2880–2888 (1997)

    Article  CAS  Google Scholar 

  18. Harris, J. A. & Westbrook, R. F. Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berl.) 140, 105–115 (1998)

    Article  CAS  Google Scholar 

  19. Lee, H. & Kim, J. J. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18, 8444–8454 (1998)

    Article  CAS  Google Scholar 

  20. Hobin, J. A., Goosens, K. A. & Maren, S. Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J. Neurosci. 23, 8410–8416 (2003)

    Article  CAS  Google Scholar 

  21. Repa, J. C. et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neurosci. 4, 724–731 (2001)

    Article  CAS  Google Scholar 

  22. McDonald, A. J., Mascagni, F. & Guo, L. Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–75 (1996)

    Article  CAS  Google Scholar 

  23. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Quirk, G. J., Likhtik, E., Pelletier, J. G. & Paré, D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J. Neurosci. 23, 8800–8807 (2003)

    Article  CAS  Google Scholar 

  25. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Burgos-Robles, A., Vidal-Gonzalez, I., Santini, E. & Quirk, G. J. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53, 871–880 (2007)

    Article  CAS  Google Scholar 

  27. Milad, M. R. et al. Presence and acquired origin of reduced recall for fear extinction in PTSD: Results of a twin study. J. Psychiatr. Res. 42, 515–520 (2008)

    Article  Google Scholar 

  28. Bremner, J. D., Elzinga, B., Schmahl, C. & Vermetten, E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog. Brain Res. 167, 171–186 (2008)

    Article  Google Scholar 

  29. Shin, L. M., Rauch, S. L. & Pitman, R. K. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann. NY Acad. Sci. 1071, 67–79 (2006)

    Article  ADS  Google Scholar 

  30. Fuxe, K. et al. The dopamine D1 receptor-rich main and paracapsular intercalated nerve cell groups of the rat amygdala: relationship to the dopamine innervation. Neuroscience 119, 733–746 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by RO1 grant MH-073610 to D.P. and NRSA fellowship F31 MH76415 to E.L. from NIMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Paré.

Supplementary information

Supplementary Information 1

The file contains Supplementary Figures 1-3 with Legends. (PDF 602 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likhtik, E., Popa, D., Apergis-Schoute, J. et al. Amygdala intercalated neurons are required for expression of fear extinction. Nature 454, 642–645 (2008). https://doi.org/10.1038/nature07167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing