Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons

Abstract

During development of the visual system, the pattern of visual inputs may have an instructive role in refining developing neural circuits1,2,3,4. How visual inputs of specific spatiotemporal patterns shape the circuit development remains largely unknown. We report here that, in the developing Xenopus retinotectal system, the receptive field of tectal neurons can be ‘trained’ to become direction-sensitive within minutes after repetitive exposure of the retina to moving bars in a particular direction. The induction of direction-sensitivity depends on the speed of the moving bar, can not be induced by random visual stimuli, and is accompanied by an asymmetric modification of the tectal neuron's receptive field. Furthermore, such training-induced changes require spiking of the tectal neuron and activation of a NMDA (N-methyl-d-aspartate) subtype of glutamate receptors during training, and are attributable to an activity-induced enhancement of glutamate-mediated inputs. Thus, developing neural circuits can be modified rapidly and specifically by visual inputs of defined spatiotemporal patterns, in a manner consistent with predictions based on spike-time-dependent synaptic modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping the receptive field of developing Xenopus tectal neurons.
Figure 2: Selective enhancement of tectal cell responses by training with a moving bar.
Figure 3: Effect of training with stimuli of different spatiotemporal patterns.
Figure 4: Asymmetric modification of the tectal receptive field by training with moving stimuli.
Figure 5: Synaptic mechanisms.

Similar content being viewed by others

References

  1. Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982)

    ADS  CAS  Google Scholar 

  2. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Penn, A. A. & Shatz, C. J. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res. 45, 447–458 (1999)

    Article  CAS  Google Scholar 

  4. Zhang, L. I. & Poo, M. M. Electrical activity and development of neural circuits. Nature Neurosci. 4 Suppl., 1207–1214 (2001)

    Article  CAS  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965)

    Article  CAS  Google Scholar 

  6. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Cynader, M., Berman, N. & Hein, A. Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex. Proc. Natl Acad. Sci. USA 70, 1353–1354 (1973)

    Article  ADS  CAS  Google Scholar 

  9. Schmidt, J. T. & Eisele, L. E. Stroboscopic illumination and dark rearing block the sharpening of the regenerated retinotectal map in goldfish. Neuroscience 14, 535–546 (1985)

    Article  CAS  Google Scholar 

  10. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000)

    Article  ADS  CAS  Google Scholar 

  12. von Melchner, L., Pallas, S. L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404, 871–876 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Fregnac, Y., Shulz, D., Thorpe, S. & Bienenstock, E. A cellular analogue of visual cortical plasticity. Nature 333, 367–370 (1988)

    Article  ADS  CAS  Google Scholar 

  14. Schuett, S., Bonhoeffer, T. & Hubener, M. Pairing-induced changes of orientation maps in cat visual cortex. Neuron 32, 325–337 (2001)

    Article  CAS  Google Scholar 

  15. Gaze, R. M., Keating, M. J. & Chung, S. H. The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. London B 185, 301–330 (1974)

    Article  ADS  CAS  Google Scholar 

  16. Holt, C. E. & Harris, W. A. Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres. Nature 301, 150–152 (1983)

    Article  ADS  CAS  Google Scholar 

  17. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  CAS  Google Scholar 

  18. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. & Poo, M. M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000)

    Article  CAS  Google Scholar 

  20. Boettiger, C. A. & Doupe, A. J. Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31, 809–818 (2001)

    Article  CAS  Google Scholar 

  21. Abbott, L. F. & Blum, K. I. Functional significance of long-term potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416 (1996)

    Article  CAS  Google Scholar 

  22. Zanker, J. M. & Zeil, J. Motion Vision—Computational, Neural, and Ecological Constraints (Springer, New York, 2000)

    Google Scholar 

  23. Rao, R. P. & Sejnowski, T. J. Predictive learning of temporal sequences in recurrent neocortical circuits. Novartis Found. Symp. 239, 208–229 (2001)

    CAS  Google Scholar 

  24. Roberts, P. D. Computational consequences of temporally asymmetric learning rules. I. Differential hebbian learning. J. Comput. Neurosci. 7, 235–246 (1999)

    Article  CAS  Google Scholar 

  25. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Mehta, M. R., Quirk, M. C. & Wilson, M. A. Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25, 707–715 (2000)

    Article  CAS  Google Scholar 

  27. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999)

    Article  CAS  Google Scholar 

  29. Zhang, L. I., Tao, H. & Poo, M. Visual input induces long-term potentiation of developing retinotectal synapses. Nature Neurosci. 3, 708–715 (2000)

    Article  CAS  Google Scholar 

  30. Rae, J., Cooper, K., Gates, P. & Watsky, M. Low access resistance perforated patch recordings using amphotericin B. J. Neurosci. Methods 37, 15–26 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NSF and NIH. F.E. was supported in part by a long-term fellowship from the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engert, F., Tao, H., Zhang, L. et al. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419, 470–475 (2002). https://doi.org/10.1038/nature00988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00988

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing