Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural correlates of change detection and change blindness

Abstract

Functional magnetic resonance imaging (fMRI) of subjects attempting to detect a visual change occurring during a screen flicker was used to distinguish the neural correlates of change detection from those of change blindness. Change detection resulted in enhanced activity in the parietal and right dorsolateral prefrontal cortex as well as category-selective regions of the extrastriate visual cortex (for example, fusiform gyrus for changing faces). Although change blindness resulted in some extrastriate activity, the dorsal activations were clearly absent. These results demonstrate the importance of parietal and dorsolateral frontal activations for conscious detection of changes in properties coded in the ventral visual pathway, and thus suggest a key involvement of dorsal–ventral interactions in visual awareness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Face change trial.
Figure 2: Activity related to category-specific conscious detection of change.
Figure 3: Results from experiment 1 shown on three views of the T1-weighted anatomical template.
Figure 4: Results from experiment 2.
Figure 5: Results of the random effects analysis of the 10 subjects in experiments 1 and 2.

Similar content being viewed by others

References

  1. Rensink, R. A., O'Regan, J. K. & Clark, J. J. To see or not to see: the need for attention to perceive changes in scenes. Psychol. Sci. 8, 368–373 (1997).

    Article  Google Scholar 

  2. O'Regan, J. K., Rensink, R. A. & Clark, J. J. Change-blindness as a result of 'mudsplashes.' Nature 398, 34 (1999).

    Article  CAS  Google Scholar 

  3. Navon, D. & Gofer, D. On the economy of the human processing system. Psychol. Rev. 80, 214–255 (1979).

    Article  Google Scholar 

  4. Kanwisher, K., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  5. Gorno Tempini, M. L. et al. The neural systems sustaining face and proper-name processing. Brain 121, 2103–2118 (1998).

    Article  Google Scholar 

  6. Epstein, R. & Kanwisher, K. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  7. Milner, D. & Goodale, M. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  8. Ro, T., Russell, C. & Lavie, N. Changing faces: a detection advantage in the flicker paradigm. Psychol. Sci. 12, 94–99 (2001).

    Article  CAS  Google Scholar 

  9. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, K. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

  10. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  11. Logothetis, N. Object vision and visual awareness. Curr. Opin. Neurobiol. 8, 536–544 (1998).

    Article  CAS  Google Scholar 

  12. Zeki, S. A Vision of the Brain (Blackwell Scientific Publications, Oxford, 1993).

    Google Scholar 

  13. Farah, M. J. Visual Agnosia: Disorders of Object Recognition and What They Tell Us About Normal Vision (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  14. Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998).

    Article  CAS  Google Scholar 

  15. Rees, G. et al. Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction. Brain 123, 1624–1633 (2000).

    Article  Google Scholar 

  16. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    Article  CAS  Google Scholar 

  17. Kleinschmidt, A., Büchel, C., Zeki, S. & Frackowiak, R. S. J. Human brain activity during spontaneously reversing perception of ambiguous figures. Proc. R. Soc. Lond. B Biol. Sci. 265, 2427–2433 (1998).

    Article  CAS  Google Scholar 

  18. Shulman, G. L., Ollinger, J. M., Linenweber, M., Peterson, S. E. & Corbetta, M. Multiple neural correlates of detection in the human brain. Proc. Natl. Acad. Sci. USA 98, 313–318 (2001).

    Article  CAS  Google Scholar 

  19. Corbetta, M., Miezen, F. M., Dobmeyer, S., Shulman, G. L. & Peterson, S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  Google Scholar 

  20. Coull, J. T. & Frith, C. D. Differential activation of right superior parietal cortex and interparietal sulcus by spatial and nonspatial attention. Neuroimage 8, 176–187 (1998).

    Article  CAS  Google Scholar 

  21. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  22. O'Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).

    Article  CAS  Google Scholar 

  23. Rees, G., Frith, C.D. & Lavie, N. Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science 278, 1616–1619 (1997).

    Article  CAS  Google Scholar 

  24. Mack, A. & Rock, I. Inattentional Blindness (MIT Press, Cambridge, Massachusetts, 1998).

    Book  Google Scholar 

  25. Rees, G., Russell, C., Frith, C. D. & Driver, J. Inattentional blindness versus inattentional amnesia for fixated but ignored words. Science 286, 2504–2507 (1999).

    Article  CAS  Google Scholar 

  26. Simons, D. J. & Levin, D. T. Failure to detect changes to people during a real-world interaction. Psychon. Bull. Rev. 5, 644–649 (1998).

    Article  Google Scholar 

  27. Gitelman, D. R., Parrish, T. B., LaBar, K. S. & Mesulam, M. -M. Real-time monitoring of eye movements using infrared video-oculography during functional magnetic resonance imaging of the frontal eye fields. Neuroimage 11, 58–65 (2000).

    Article  CAS  Google Scholar 

  28. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  29. Turner, R., Howseman, A., Rees, G. E., Josephs, O. & Friston, K. J. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain Res. 123, 5–12 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Kanwisher for providing the face and place images, and J. Driver for his comments on the manuscript. This work was supported by a Biotechnology and Biological Sciences Research Council grant (N.L.), a Medical Research Council career award (N.L.) and The Wellcome Trust (G.R., C.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane M. Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, D., Rees, G., Frith, C. et al. Neural correlates of change detection and change blindness. Nat Neurosci 4, 645–650 (2001). https://doi.org/10.1038/88477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing