Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurotrophins are required for nerve growth during development

Abstract

Although the requirement of neurotrophins for the prevention of cell death in the peripheral nervous system is well established, their physiological involvement in nerve growth is still unclear. To address this question, we generated a mouse that expresses the green fluorescent protein in post-mitotic neurons, allowing the repeated visualization of all motor and sensory axons during development. We imaged the growth of these axons into the limb bud of day 10.5 embryos. Sensory axons, but rarely motor axons, were targeted to ectopically placed beads containing any of the neurotrophins NGF, BDNF, NT-3 or NT-4/5. Conversely, a combination of function-blocking monoclonal antibodies to NGF, BDNF and NT-3 dramatically inhibited elongation of both sensory and motor axons in the limb bud, indicating that the growth of mixed nerves is dependent upon neurotrophins during development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the EGFP cDNA to the tau locus results in the expression of EGFP in the entire developing nervous system.
Figure 2: Slice culture of 10.75 d.p.c. embryos.
Figure 3: Spinal nerves are targeted to neurotrophin-soaked beads.
Figure 4: Negative controls for experiments using monoclonal antibodies to neurotrophins.
Figure 5: Monoclonal antibodies to neurotrophins inhibit axonal elongation.
Figure 6: Acute application of antibodies to NGF, NT-3 and BDNF inhibits axonal elongation.

Similar content being viewed by others

References

  1. Bibel, M. & Barde, Y.-A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2920–2935 (2000).

    Article  Google Scholar 

  2. Gundersen, L. W. & Barrett, J. N. Neuronal chemotaxis: chick dorsal root axons turn towards high concentrations of nerve growth factor. Science 206, 1079–1080 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Song, H. J., Ming, G. L. & Poo, M.-m. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Ming, G., Lohof, A. M. & Zheng, J. Q. Acute morphogenic and chemotropic effects of neurotrophins on cultured embryonic Xenopus spinal neurons. J. Neurosci. 17, 7860–7871 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Menesini Chen, M. G., Chen, J. S. & Levi-Montalcini, R. Sympathetic nerve fibers ingrowth in the central nervous system of neonatal rodent upon intracerebral NGF injections. Arch. Ital. Biol. 116, 53–84 (1978).

    CAS  PubMed  Google Scholar 

  6. Hoyle, G. W., Mercer, E. H., Palmiter, R. D. & Brinster, R. L. Expression of NGF in sympathetic neurons leads to excessive axon outgrowth from ganglia but decreased terminal innervation within tissues. Neuron 10, 1019–1034 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Hassankhani, A. et al. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev. Biol. 169, 309–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Albers, K. M., Wright, D. E. & Davis, B. M. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J. Neurosci. 14, 1422–1432 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albers, K. M. et al. Cutaneous overexpression of NT-3 increases sensory and sympathetic neuron number and enhances touch dome and hair follicle innervation. J. Cell Biol. 134, 487–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. ElShamy, W. M., Linnarsson, S., Lee, K.-F., Jaenisch, R. & Ernfors, P. Prenatal and postnatal requirements of NT-3 for sympathetic neuroblast survival and innervation of specific targets. Development 122, 491–500 (1996).

    CAS  PubMed  Google Scholar 

  11. Patel, T. D., Jackman, A., Rice, F. L., Kucera, J. & Snider, W. D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Fagan, A. M. et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J. Neurosci. 16, 6208–6218 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binder, L. I., Frankfurter, A. & Rebhun, L. I. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101, 1371–1378 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Harada, A. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Moody, S. A., Quigg, M. S. & Frankfurter, A. Development of the peripheral trigeminal system in the chick revealed by an isotype-specific anti-beta-tubulin monoclonal antibody. J. Comp. Neurol. 279, 567–580 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Morriss-Kay, G. M. in Essential Developmental Biology: A Practical Approach (eds. Stern, C. D. & Holland, P. W. H.) 55–66 (IRL, Oxford, 1993).

    Google Scholar 

  18. Katz, L. C. Local circuitry of identified projection neurons in cat visual cortex brain slices. J. Neurosci. 7, 1223–1249 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theiler, K. The House Mouse: Development and Normal Stages from Fertilization to 4 Weeks of Age (Springer, Berlin, 1972).

    Google Scholar 

  20. Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Frade, J. M. & Barde, Y.-A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20, 35–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & Klein, R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11, 3341–3350 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Korsching, S. & Thoenen, H. in Methods in Enzymology: Peptide Growth Factors Vol. 147 (eds. Barnes, D. & Sirbasku, D. A.) Part B, 167–185 (Academic, New York, 1987).

    Book  Google Scholar 

  24. Gaese, F., Kolbeck, R. & Barde, Y.-A. Sensory ganglia require neurotrophin-3 early in development. Development 120, 1613–1619 (1994).

    CAS  PubMed  Google Scholar 

  25. Kolbeck, R., Bartke, I., Eberle, W. & Barde, Y.-A. Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. J. Neurochem. 72, 1930–1938 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Cohen, S., Levi-Montalcini, R. & Hamburger, V. A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl. Acad. Sci. USA 40, 1014–1018 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farinas, I., Wilkinson, G. A., Backus, C., Reichardt, L. F. & Patapoutian, A. Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21, 325–334 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin-Zanca, D., Barbacid, M. & Parada, L. F. Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev. 4, 683–694 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Phillips, H. S. & Armanini, M. P. Expression of the trk family of neurotrophin receptors in developing and adult dorsal root ganglion neurons. Phil. Trans. R. Soc. Lond. B Biol. Sci. 351, 413–416 (1996).

    Article  CAS  Google Scholar 

  30. Gallo, G., Lefcort, F. B. & Letourneau, P. C. The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor. J. Neurosci. 17, 5445–5454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dechant, G. & Barde, Y.-A. Signalling through the neurotrophin receptor p75NTR. Curr. Opin. Neurobiol. 7, 413–418 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Yamashita, T., Tucker, K. L. & Barde, Y.-A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bandtlow, C. E., Heumann, R., Schwab, M. E. & Thoenen, H. Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 891–899 (1987).

  34. Davies, A. M. et al. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326, 353–358 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Nosrat, C. A. & Olson, L. Brain-derived neurotrophic factor mRNA is expressed in the developing taste bud-bearing tongue papillae of rat. J. Comp. Neurol. 360, 698–704 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Xue, Y. & Honig, M. G. Ultrastructural observations on the expression of axonin-1: implications for the fasciculation of sensory axons during axonal outgrowth into the chick hindlimb. J. Comp. Neurol. 408, 299–317 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Edwards, R. H., Rutter, W. J. & Hanahan, D. Directed expression of NGF to pancreatic β cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58, 161–170 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Farinas, I., Yoshida, C. K., Backus, C. & Reichardt, L. F. Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. White, F. A. et al. Synchronous onset of NGF and TrkA survival dependence in developing dorsal root ganglia. J. Neurosci. 16, 4662–4672 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright, E. M., Vogel, K. S. & Davies, A. M. Neurotrophic factors promote the maturation of developing sensory neurons before they become dependent on these factors for survival. Neuron 9, 139–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. O'Connor, R. & Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron 24, 165–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Rudnicki, M. A., Braun, T., Hinuma, S. & Jaenisch, R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383–390 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Tucker, K. L. et al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10, 1008–1020 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  45. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  46. Bibel, M., Hoppe, E. & Barde, Y.-A. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 18, 616–622 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hotary, K. B., Landmesser, L. T. & Tosney, K. W. Embryo slices. Methods Cell Biol. 51, 109–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Gotz, R., Kolbeck, R., Lottspeich, F. & Barde, Y.-A. Production and characterization of recombinant mouse neurotrophin-3. Eur. J. Biochem. 204, 745–749 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol. 5, 3610–3616 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frade, J. M. & Barde, Y.-A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126, 683–690 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Jaenisch for the J1 cells, N. Hirokawa for the Mtapt genomic clones, B. Kunkel for blastocyst injections, H. Breitsameter and M. Rittirsch for animal care, G. Dechant, M. Korte, and F. Maina for comments, and L. Lindemann for the anti-myc antibody. K.L.T. was supported by a post-doctoral fellowship from the European Molecular Biology Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Alain Barde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, K., Meyer, M. & Barde, YA. Neurotrophins are required for nerve growth during development. Nat Neurosci 4, 29–37 (2001). https://doi.org/10.1038/82868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing