Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry

Abstract

During binocular rivalry, two incompatible monocular images compete for perceptual dominance, with one pattern temporarily suppressed from conscious awareness. We measured fMRI signals in early visual cortex while subjects viewed rival dichoptic images of two different contrasts; the contrast difference served as a 'tag' for the neuronal representations of the two monocular images. Activity in primary visual cortex (V1) increased when subjects perceived the higher contrast pattern and decreased when subjects perceived the lower contrast pattern. These fluctuations in V1 activity during rivalry were about 55% as large as those evoked by alternately presenting the two monocular images without rivalry. The rivalry-related fluctuations in V1 activity were roughly equal to those observed in other visual areas (V2, V3, V3a and V4v). These results challenge the view that the neuronal mechanisms responsible for binocular rivalry occur primarily in later visual areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: V1 activity correlates with the percept.
Figure 3: Comparison of cortical activity during rivalry and physical alternation.
Figure 4: Example of averaging across individual dominance epochs.

Similar content being viewed by others

References

  1. Grossberg, S. Cortical dynamics of three-dimensional form, color, and brightness perception: II. Binocular theory. Percept. Psychophys. 41, 117–158 (1987).

    Article  CAS  Google Scholar 

  2. Blake, R. A neural theory of binocular rivalry. Psychol. Rev. 96, 145–167 (1989).

    Article  CAS  Google Scholar 

  3. Mueller, T. J. physiological model of binocular rivalry. Vis. Neurosci. 4, 63–73 (1990).

    Article  CAS  Google Scholar 

  4. Lumer, E. D. A neural model of binocular integration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cereb. Cortex 8, 553–561 ( 1998).

    Article  CAS  Google Scholar 

  5. Logothetis, N. K. & Schall, J. D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    Article  CAS  Google Scholar 

  6. Leopold, D. A. & Logothetis, N. K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 ( 1996).

    Article  CAS  Google Scholar 

  7. Leopold, D. A. Brain Mechanisms of Visual Awareness, Thesis, Baylor College of Medicine, (1997).

    Google Scholar 

  8. Sheinberg, D. L. & Logothetis, N. K. The role of temporal cortical areas in perceptual organization. Proc. Natl. Acad. Sci. USA 94, 3408–3413 (1997).

    Article  CAS  Google Scholar 

  9. Logothetis, N. K. Single units and conscious vision. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 1801–1818 (1998).

    Article  CAS  Google Scholar 

  10. Sengpiel, F. & Blakemore, C. Interocular control of neuronal responsiveness in cat visual cortex. Nature 368, 847–850 (1994).

    Article  CAS  Google Scholar 

  11. Sengpiel, F., Blakemore, C. & Harrad, R. Interocular suppression in the primary visual cortex: a possible neural basis of binocular rivalry. Vision Res. 35, 179–195 (1995).

    Article  CAS  Google Scholar 

  12. Sengpiel, F. Binocular rivalry: ambiguities resolved. Curr. Biol. 7, 447–450 (1997).

    Article  Google Scholar 

  13. Fries, P., Roelfsema, P. R., Engel, A. K., Konig, P. & Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. USA 94, 12699– 12704 (1997).

    Article  CAS  Google Scholar 

  14. Engel, A. K., Fries, P., Konig, P., Brecht, M. & Singer, W. Temporal binding, binocular rivalry, and consciousness . Conscious. Cogn. 8, 128– 151 (1999).

    Article  CAS  Google Scholar 

  15. Brown, R. J. & Norcia, A. M. A method for investigating binocular rivalry in real-time with the steady-state VEP. Vision Res. 37, 2401–2408 (1997).

    Article  CAS  Google Scholar 

  16. Tononi, G., Srinivasan, R., Russell, D. P. & Edelman, G. M. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc. Natl. Acad. Sci. USA 95, 3198–3203 (1998).

    Article  CAS  Google Scholar 

  17. Srinivasan, R., Russell, D. P., Edelman, G. M. & Tononi, G. Increased synchronization of neuromagnetic responses during conscious perception . J. Neurosci. 19, 5435– 5448 (1999).

    Article  CAS  Google Scholar 

  18. Valle-Inclan, F., Hackley, S. A., de Labra, C. & Alvarez, A. Early visual processing during binocular rivalry studied with visual evoked potentials. Neuroreport 10, 21– 25 (1999).

    Article  CAS  Google Scholar 

  19. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular-rivalry and visual awareness in human extrastriate cortex. Neuron 21, 761–773 ( 1998).

    Article  Google Scholar 

  20. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930– 1934 (1998).

    Article  CAS  Google Scholar 

  21. Lumer, E. D. & Rees, G. Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. Proc. Natl. Acad. Sci. USA 96, 1669– 1673 (1999).

    Article  CAS  Google Scholar 

  22. Heeger, D. J., Huk, A. C., Geisler, W. S. & Albrecht, D. G. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat. Neurosci. 3, 631– 633 (2000).

    Article  CAS  Google Scholar 

  23. Blake, R., O'Shea, R. P. & Mueller, T. J. Spatial zones of binocular rivalry in central and peripheral vision. Vis. Neurosci. 8, 469 –478 (1992).

    Article  CAS  Google Scholar 

  24. O'Shea, R. P., Blake, R. & Wolfe, J. M. Binocular rivalry and fusion under scotopic luminances . Perception 23, 771–784 (1994).

    Article  CAS  Google Scholar 

  25. Logothetis, N. K., Leopold, D. A. & Sheinberg, D. L. What is rivalling during binocular rivalry? Nature 380, 621–624 ( 1996).

    Article  CAS  Google Scholar 

  26. Lee, S. H. & Blake, R. Rival ideas about binocular rivalry . Vision Res. 39, 1447– 1454 (1999).

    Article  CAS  Google Scholar 

  27. Yu, K. & Blake, R. Do recognizable figures enjoy an advantage in binocular rivalry? J. Exp. Psychol. Hum. Percept. Perform. 18, 1158–1173 (1992).

    Article  CAS  Google Scholar 

  28. Kovacs, I., Papathomas, T. V., Yang, M. & Feher, A. When the brain changes its mind: interocular grouping during binocular rivalry . Proc. Natl. Acad. Sci. USA 93, 15508– 15511 (1996).

    Article  CAS  Google Scholar 

  29. Alais, D. & Blake, R. Interactions between global motion and local binocular rivalry. Vision Res. 38, 637–644 (1998).

    Article  CAS  Google Scholar 

  30. Blake, R. & Camisa, J. On the inhibitory nature of binocular rivalry suppression. J. Exp. Psychol. Hum. Percept. 5, 315–323 (1979).

    Article  CAS  Google Scholar 

  31. Smith, E. L., Levi, D. M., Harwerth, R. S. & White, J. M. Color vision is altered during the suppression phase of binocular rivalry . Science 218, 802–804 (1982).

    Article  CAS  Google Scholar 

  32. O'Shea, R. P. Chronometric analysis supports fusion rather than suppression theory of binocular vision. Vision Res. 27, 781– 791 (1987).

    Article  CAS  Google Scholar 

  33. Blake, R. & Fox, R. Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature 249 , 488–490 (1974).

    Article  CAS  Google Scholar 

  34. Lehmkuhle, S. W. & Fox, R. Effect of binocular rivalry suppression on the motion aftereffect. Vision Res. 15, 855–859 (1975).

    Article  CAS  Google Scholar 

  35. Wade, N. J. & Wenderoth, P. The influence of colour and contour rivalry on the magnitude of the tilt after-effect. Vision Res. 18, 827–835 ( 1978).

    Article  CAS  Google Scholar 

  36. Blake, R. & Overton, R. The site of binocular rivalry suppression . Perception 8, 143–152 (1979).

    Article  CAS  Google Scholar 

  37. O'Shea, R. P. & Crassini, B. Interocular transfer of the motion after-effect is not reduced by binocular rivalry. Vision Res. 21, 801–804 (1981).

    Article  CAS  Google Scholar 

  38. Andrews, T. J. & Blakemore, C. Form and motion have independent access to consciousness. Nat. Neurosci. 2, 405–406 (1999).

    Article  CAS  Google Scholar 

  39. Wiesenfelder, H. & Blake, R. Apparent motion can survive binocular rivalry suppression. Vision Res. 31, 1589–1599 (1991).

    Article  CAS  Google Scholar 

  40. Ress, D., Backus, B. T. & Heeger, D. J. Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3, 940–945 (2000).

    Article  CAS  Google Scholar 

  41. Preuss, T. M., Qi, H. & Kaas, J. H. Distinctive compartmental organization of human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 11601– 11606 (1999).

    Article  CAS  Google Scholar 

  42. Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat. Neurosci. 3, 716–723 (2000).

    Article  CAS  Google Scholar 

  43. Glover, G. H. Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42, 412–415 (1999).

    Article  CAS  Google Scholar 

  44. Nestares, O. & Heeger, D. J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  45. Smith, A. et al. Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–533 ( 1999).

    Article  CAS  Google Scholar 

  46. Aguirre, G., Zarahn, E. & D'Esposito, M. The variability of human, bold hemodynamic-responses . Neuroimage 8, 360–369 (1998).

    Article  CAS  Google Scholar 

  47. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  48. Teo, P. C., Sapiro, G. & Wandell, B. A. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. Med. Imaging 16, 852–863 ( 1997).

    Article  CAS  Google Scholar 

  49. Wandell, B., Chial, S. and Backus, B. Visualization and measurement of the cortical surface. J. Cogn. Neurosci. (in press).

Download references

Acknowledgements

This research was supported by a grant from the National Eye Institute (R01-EY12741), a NIH Biophysics Training Grant (2T32GM08294), the Vanderbilt Discovery Program and the NSF Center for Neuromorphic Engineering at Caltech. Thanks to G.H. Glover (supported by a NIH National Center for Research Resources grant) for technical support, to D. Leopold for providing us with the single-cell electrophysiological data from his thesis, to N. Logothetis for comments, and to A. Parker and A. Huk for help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Heeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polonsky, A., Blake, R., Braun, J. et al. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3, 1153–1159 (2000). https://doi.org/10.1038/80676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing