Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development

Abstract

Most models of thalamocortical development in the visual system assume a homogeneous population of thalamic inputs to the cortex, each with concentric on- or off-center receptive fields. To test this, we made high-resolution spatial maps of receptive fields in the developing ferret lateral geniculate nucleus (LGN). Developing receptive fields (RFs), had a variety of shapes: some concentric, others elongated (like adult cortical receptive fields) and some with ‘hot spots’ of sensitivity. These receptive fields seemed to arise from convergence of multiple retinal afferents onto LGN neurons. We present a Hebbian model whereby imprecise retinogeniculate connections help refine geniculocortical connections, sharpening both thalamocortical topography and perhaps orientation selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of receptive-field shapes in the developing ferret LGN.
Figure 2: Reproducibility of fine receptive-field structure.
Figure 3: Receptive-field center diameter of LGN cells, plotted as a function of age.
Figure 4: Many developing receptive-field centers are much better represented as two Gaussians than one, whereas adult and ganglion-cell receptive-field centers are adequately represented by one Gaussian.
Figure 5: The relationship between an immature LGN neuron and one of its ganglion-cell inputs.
Figure 6: Receptive-field elongation.
Figure 7: Maturation of geniculate response timing.
Figure 8: The convergence/divergence model of thalamocortical development.

Similar content being viewed by others

References

  1. Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  2. Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    Article  CAS  Google Scholar 

  3. LeVay, S., Stryker, M. P. & Shatz, C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244 (1978).

    Article  CAS  Google Scholar 

  4. Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  5. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  6. Miller, K. D. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  7. Galli, L. & Maffei, L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242, 90–91 (1988).

    Article  CAS  Google Scholar 

  8. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  CAS  Google Scholar 

  9. Artola, A. & Singer, W. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652 (1987).

    Article  CAS  Google Scholar 

  10. Bear, M. F., Kleinschmidt, A., Gu, Q. A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  11. Mooney, R., Penn, A. A., Gallego, R. & Shatz, C. J. Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863–874 (1996).

    Article  CAS  Google Scholar 

  12. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  13. Von der Malsburg, C. & Cowan, J. D. Outline of a theory for the ontogenesis of iso-orientation domains in visual cortex. Biol. Cybern. 45, 49–56 (1982).

    Article  CAS  Google Scholar 

  14. Daniels, J. D., Pettigrew, J. D. & Norman, J. L. Development of single-neuron responses in kitten's lateral geniculate nucleus. J. Neurophysiol. 41, 1373–1393 (1978).

    Article  CAS  Google Scholar 

  15. Blakemore, C. & Vital-Durand, F. Organization and post-natal development of the monkey's lateral geniculate nucleus. J. Physiol. (Lond.) 380, 453–491 (1986).

    Article  CAS  Google Scholar 

  16. Mason, C. A. Development of terminal arbors of retino-geniculate axons in the kitten—I. Light microscopical observations. Neuroscience 7, 541–559 (1982).

    Article  CAS  Google Scholar 

  17. Sur, M., Weller, R. E. & Sherman, S. M. Development of X- and Y-cell retinogeniculate terminations in kittens. Nature 310, 246–249 (1984).

    Article  CAS  Google Scholar 

  18. Sretavan, D. W. & Shatz, C. J. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci. 6, 234–251 (1986).

    Article  CAS  Google Scholar 

  19. Tootle, J. S. & Friedlander, M. J. Postnatal development of the spatial contrast sensitivity of X- and Y-cells in the kitten retinogeniculate pathway. J. Neurosci. 9, 1325–1340 (1989).

    Article  CAS  Google Scholar 

  20. Barlow, H. B. & Pettigrew, J. D. Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218, 98–100 (1971).

    Google Scholar 

  21. Albus, K. & Wolf, W. Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis. J. Physiol. (Lond.) 348, 153–185 (1984).

    Article  CAS  Google Scholar 

  22. Chapman, B. & Stryker, M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  23. Chapman, B., Stryker, M. P. & Bonhoeffer, T. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16, 6443–6453 (1996).

    Article  CAS  Google Scholar 

  24. Gödecke, I., Kim, D. S., Bonhoeffer, T. & Singer, W. Development of orientation preference maps in area 18 of kitten visual cortex. Eur. J. Neurosci. 9, 1754–1762 (1997).

    Article  Google Scholar 

  25. Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R. & Stryker, M. P. The critical period for ocular dominance plasticity in the ferret's visual cortex. J. Neurosci. 19, 6965–6978 (1999).

    Article  CAS  Google Scholar 

  26. Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article  CAS  Google Scholar 

  27. Hubel, D. H. & Wiesel, T. N. Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).

    Article  CAS  Google Scholar 

  28. Vidyasagar, T. R. & Urbas, J. V. Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp. Brain Res. 46, 157–169 (1982).

    Article  CAS  Google Scholar 

  29. Soodak, R. E., Shapley, R. M. & Kaplan, E. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. J. Neurophysiol. 58, 267–275 (1987).

    Article  CAS  Google Scholar 

  30. Cleland, B. G., Dubin, M. W. & Levick, W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nat. New Biol. 231, 191–192 (1971).

    Article  CAS  Google Scholar 

  31. Usrey, W. M., Reppas, J. B. & Reid, R. C. Specificity and strength of retinogeniculate connections. J. Neurophysiol. 82, 3527–3540 (1999).

    Article  CAS  Google Scholar 

  32. Hammond, P. Cat retinal ganglion cells: size and shape of receptive field centres. J. Physiol. (Lond.) 242, 99–118 (1974).

    Article  CAS  Google Scholar 

  33. Cai, D., DeAngelis, G. C. & Freeman, R. D. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78, 1045–1061 (1997).

    Article  CAS  Google Scholar 

  34. Murphy, P. C. & Sillito, A. M. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727–729 (1987).

    Article  CAS  Google Scholar 

  35. Sherman, S. M. & Guillery, R. W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).

    Article  CAS  Google Scholar 

  36. Hamos, J. E., Van Horn, S. C., Raczkowski, D., Uhlrich, D. J. & Sherman, S. M. Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317, 618–621 (1985).

    Article  CAS  Google Scholar 

  37. Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383, 815–819 (1996).

    Article  CAS  Google Scholar 

  38. Usrey, W. M., Reppas, J. B. & Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 396, 384–387 (1998).

    Article  Google Scholar 

  39. Cleland, B. G. in Visual Neuroscience (eds. Pettigrew, J. D., Sanderson, K. S. & Levick, W. R.) 111–120 (Cambridge Univ. Press, London, 1986).

    Google Scholar 

  40. Mastronarde, D. N. Interactions between ganglion cells in cat retina. J. Neurophysiol. 49, 350–365 (1983).

    Article  CAS  Google Scholar 

  41. Henderson, Z., Finlay, B. L. & Wikler, K. C. Development of ganglion cell topography in ferret retina. J. Neurosci. 8, 1194–1205 (1988).

    Article  CAS  Google Scholar 

  42. Linden, D. C., Guillery, R. W. & Cucchiaro, J. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J. Comp. Neurol. 203, 189–211 (1981).

    Article  CAS  Google Scholar 

  43. Peters, A. & Payne, B. R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).

    Article  CAS  Google Scholar 

  44. Peichl, L. & Wässle, H. Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J. Physiol. (Lond.) 291, 117–141 (1979).

    Article  CAS  Google Scholar 

  45. Kirkwood, A., Lee, H. K. & Bear, M. F. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375, 328–331 (1995).

    Article  CAS  Google Scholar 

  46. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  Google Scholar 

  47. Crowley, J. C. & Katz, L. C. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130 (1999).

    Article  CAS  Google Scholar 

  48. Sherk, H. & Stryker, M. P. Quantitative study of cortical orientation selectivity in visually inexperienced kitten. J. Neurophysiol. 39, 63–70 (1976).

    Article  CAS  Google Scholar 

  49. Zahs, K. R. & Stryker, M. P. The projection of the visual field onto the lateral geniculate nucleus of the ferret. J. Comp. Neurol. 241, 210–224 (1985).

    Article  CAS  Google Scholar 

  50. Price, D. J. & Morgan, J. E. Spatial properties of neurones in the lateral geniculate nucleus of the pigmented ferret. Exp. Brain Res. 68, 28–36 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants EY10115 and EY12196, The Lefler Fund and the Quan Foundation. W. Martin Usrey and John Reppas provided assistance at all stages of this project. Sergey Yurgenson provided programming assistance, and Elisabeth Serra and Christine Couture, technical assistance. Markus Meister, Kenneth Miller, John Assad, Saeed Tavazoie, Ben Gewurz and Vamsi Mootha gave comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Clay Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavazoie, S., Clay Reid, R. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat Neurosci 3, 608–616 (2000). https://doi.org/10.1038/75786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing