Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons

Abstract

Networks of GABAergic interneurons are implicated in synchronizing cortical activity at gamma frequencies (30–70 Hz). Here we demonstrate that the combined electrical and GABAergic synaptic coupling of basket cells instantaneously entrained gamma-frequency postsynaptic firing in layers 2/3 of rat somatosensory cortex. This entrainment was mediated by rapid curtailment of gap junctional coupling potentials by GABAA receptor-mediated IPSPs. Electron microscopy revealed spatial proximity of gap junctions and GABAergic synapses on somata and dendrites. Electrical coupling alone entrained postsynaptic firing with a phase lag, whereas unitary GABAergic connections were ineffective in gamma-frequency phasing. These observations demonstrate precise spatiotemporal mechanisms underlying action potential timing in oscillating interneuronal networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential modulation of postsynaptic firing by presynaptic gamma-frequency activity in two interneuron–interneuron connections.
Figure 2: Electron microscopic evidence for gap junctions between cortical interneurons.
Figure 3: A single presynaptic GABAergic neuron can synchronize postsynaptic firing at gamma-frequency by conjoint action of neighboring gap junctions and chemical synapses (Fig. 4).
Figure 4: Identification of interneurons involved in conjoint electrical and synaptic interaction as shown in Fig. 3.
Figure 5: Classification of postsynaptic interneuron firing behavior by cluster analysis of firing probability in response to gamma-frequency presynaptic firing.

Similar content being viewed by others

References

  1. Niedermeyer, E. & Lopes da Silva, F. Electroencephalography: Basic Principles, Clinical Applications and Related Fields (Williams and Wilkins, Baltimore, 1993).

    Google Scholar 

  2. Jefferys, J. G. R., Traub, R. D. & Whittington, M. A. Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci. 19, 202– 208 (1996).

    Article  CAS  Google Scholar 

  3. Mainen, Z. F. & Sejnowski, T. J. Reliability of spike timing in neocortical neurons. Science 268, 1503 –1506 (1995).

    Article  CAS  Google Scholar 

  4. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  5. Lisman, J. E. & Idiart, M. A. P. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    Article  CAS  Google Scholar 

  6. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 ( 1999).

    Article  CAS  Google Scholar 

  7. Buzsaki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Current Neurobiol. 5, 504–510 (1995).

    Article  CAS  Google Scholar 

  8. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).

    Article  CAS  Google Scholar 

  9. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  10. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621– 624 (1996).

    Article  CAS  Google Scholar 

  11. Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).

    Article  CAS  Google Scholar 

  12. Lytton, W. W. & Sejnowski, T. J. Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66, 1059–1079 ( 1991).

    Article  CAS  Google Scholar 

  13. Swadlow, H. A., Beloozerova, I. N. & Sirota, M. G. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J. Neurophysiol. 79, 567–582 ( 1998).

    Article  CAS  Google Scholar 

  14. Buhl, E. H., Tamas, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond.) 513, 117–126 ( 1998).

    Article  CAS  Google Scholar 

  15. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 ( 1998).

    Article  CAS  Google Scholar 

  16. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).

    Article  CAS  Google Scholar 

  17. Christie, M. J., Williams, J. T. & North, R. A. Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J. Neurosci. 9, 3584–3589 ( 1989).

    Article  CAS  Google Scholar 

  18. Mann-Metzer, P. & Yarom, Y. Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J. Neurosci. 19 , 3298–3306 (1999).

    Article  CAS  Google Scholar 

  19. Draguhn, A., Traub, R. D., Schmitz, D. & Jefferys, J. G. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189– 192 (1998).

    Article  CAS  Google Scholar 

  20. Koos, T. & Tepper, J. M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467–472 (1999).

    Article  CAS  Google Scholar 

  21. Gibson, J. F., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75– 79 (1999).

    Article  CAS  Google Scholar 

  22. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).

    Article  CAS  Google Scholar 

  23. Sloper, J. J. Gap junctions between dendrites in the primate neocortex. Brain. Res. 44, 641–646 ( 1972).

    Article  CAS  Google Scholar 

  24. Peters, A. Morphological correlates of epilepsy: cells in the cerebral cortex. Adv. Neurol. 27, 21–48 ( 1980).

    CAS  PubMed  Google Scholar 

  25. Kosaka, T. & Hama, K. Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J. Comp. Neurol. 231, 150–161 (1985).

    Article  CAS  Google Scholar 

  26. Pappas, G. D. & Bennett, M. V. Specialized junctions involved in electrical transmission between neurons. Ann. NY Acad. Sci. 137, 495–508 ( 1966).

    Article  CAS  Google Scholar 

  27. Nakajima, Y. Fine structure of the synaptic endings on the Mauthner cell of the goldfish. J. Comp. Neurol. 156, 375– 402 (1974).

    Article  Google Scholar 

  28. Tamas, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).

    Article  CAS  Google Scholar 

  29. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279– 285 (1998).

    Article  CAS  Google Scholar 

  30. Tamas, G., Buhl, E. H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by distinct types of GABAergic neuron in the cat visual cortex. J. Physiol. (Lond.) 500, 715–738 (1997).

    Article  CAS  Google Scholar 

  31. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  Google Scholar 

  32. Peinado, A., Yuste, R. & Katz, L. C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10, 103–114 (1993).

    Article  CAS  Google Scholar 

  33. Connors, B. W., Benardo, L. S. & Prince, D. A. Coupling between neurons of the developing rat neocortex. J. Neurosci. 3, 773–782 (1983).

    Article  CAS  Google Scholar 

  34. Tamas, G., Buhl, E. H. & Somogyi, P. Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17, 6352 –6364 (1997).

    Article  CAS  Google Scholar 

  35. Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Kogo, G. Maccaferri and O. Paulsen for scientific advice and technical help and J. D. B. Roberts and P. Jays for technical assistance. This work was also supported by the James S. McDonnell Foundation (EESI grant No 97-39), the Wellcome Trust, a European Commission Shared Cost RTD Program (No. BIO4CT96-0585) and the Hungarian Scientific Research Fund. G. T. was a Zoltán Magyary and OTKA Scholar during part of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Tamás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamás, G., Buhl, E., Lörincz, A. et al. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3, 366–371 (2000). https://doi.org/10.1038/73936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing