Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortically induced thalamic plasticity in the primate somatosensory system

Abstract

The influence of cortical feedback on receptive field organization in the thalamus was assessed in the primate somatosensory system. Chronic and acute suppression of neuronal activity in primary somatosensory cortex resulted in a striking enlargement of receptive fields in the ventroposterior thalamus. This finding demonstrates a dramatic 'top-down' influence of cortex on receptive field size in the somatosensory thalamus. In addition, this result has important implications for studies of adult neuronal plasticity because it indicates that changes in 'higher-order' areas of the brain can trigger extensive changes in the receptive field characteristics of neurons located earlier in the processing pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative RFs in VP following chronic administration of D-APV to somatosensory cortex.
Figure 2: Distribution histogram of RF sizes for recording sites localized within the VPL hand representation between control and D-APV groups.
Figure 3: RF size in VPL before and after acute cortical D-APV administration.

Similar content being viewed by others

References

  1. Liu, X.B., Honda, C.N. & Jones, E.G. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J. Comp. Neurol. 352, 69–91 (1995).

    Article  CAS  Google Scholar 

  2. Jones, E.G. The Thalamus . (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Yuan, B., Morrow, T.J. & Casey, K.L. Responsiveness of ventrobasal thalamic neurons after suppression of S1 cortex in the anesthetized rat. J. Neurosci. 5, 2971–2978 (1985).

    Article  CAS  Google Scholar 

  4. Ghosh, S., Murray, G.M., Turman, A.B. & Rowe, M.J. Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II. Exp. Brain. Res. 100, 276 –286 (1994).

    Article  CAS  Google Scholar 

  5. Burchfiel, J.L. & Duffy, F.H. Corticofugal influences upon cat thalamic ventrobasal complex. Brain Res. 70, 395–411 (1974).

    Article  CAS  Google Scholar 

  6. Shin, H.C. & Chapin, J.K. Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation. Somatosens. Motor Res. 7, 421–434 (1990).

    Article  CAS  Google Scholar 

  7. Tsumoto, T. & Nakamura, S. Inhibitory organization of the thalamic ventrobasal neurons with different peripheral representations. Exp. Brain Res. 21, 195–210 (1974).

    CAS  PubMed  Google Scholar 

  8. Conti, F. & Minelli, A. in Excitatory Amino Acids and the Cerebral Cortex. (eds Conti, F. & Hicks, T.P.) 81– 98 (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  9. Garraghty, P.E. & Muja, N. NMDA receptors and plasticity in adult primate somatosensory cortex. J. Comp. Neurol. 367, 319–326 (1996).

    Article  CAS  Google Scholar 

  10. Pons, T.P., Wall, J.T., Garraghty, P.E., Cusick, C.G. & Kaas, J.H. Consistent features of the representation of the hand in area 3b of macaque monkeys. Somatosensory Res. 4, 309–331 (1987).

    Article  CAS  Google Scholar 

  11. Poggio, G.F. & Mountcastle, V.B. The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. . J. Neurophysiol. 26, 775–806 (1963).

    Article  CAS  Google Scholar 

  12. Loe, P.R., Whitsel, B.L., Dreyer, D.A. & Metz, C.B. Body representation in ventrobasal thalamus of macaque: a single-unit analysis. . J. Neurophysiol. 40, 1339–1355 (1977).

    Article  CAS  Google Scholar 

  13. Bava, A., Fadiga, E. & Manzoni, T. Extralemniscal reactivity and commisural linkages in the VPL nucleus of cats with chronic cortical lesions. Arch. Ital. Biol. 106, 204–226 (1968).

    CAS  PubMed  Google Scholar 

  14. Kaas, J.H. & Pons, T.P. in Comparative Primate Biology, Neurosciences. (eds Steklis, H.P. & Erwin, J.) 421– 468 (Alan R. Liss, New York, 1988).

    Google Scholar 

  15. Dostrovsky,J.O., Millar, J. & Wall, P.D. The immediate shift of afferent drive of dorsal column nucleus cells following deafferentation: A comparison of acute and chronic deafferentation in gracile nucleus and spinal cord. Exp. Neurol. 52, 480–495 ( 1976).

    Article  CAS  Google Scholar 

  16. McMahan, S.B. & Wall, P.D. Plasticity in the nucleus gracilis of the rat. Exp. Neurol. 80, 195– 207 (1983).

    Article  Google Scholar 

  17. Pollin, B. & Albe-Fessard, P. Organization of somatic thalamus in monkeys with and without section of dorsal spinal track. Brain Res. 173, 431–449 (1979).

    Article  CAS  Google Scholar 

  18. Garraghty, P.E. & Kaas, J.H. . Functional reorganization in adult monkey thalamus after peripheral nerve injury. Neuroreport 2, 747–750 (1991).

    Article  CAS  Google Scholar 

  19. Merzenich, M.M. et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8, 33–55 (1983).

    Article  CAS  Google Scholar 

  20. Merzenich, M.M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys . J. Comp. Neurol. 224, 591– 605 (1984).

    Article  CAS  Google Scholar 

  21. Pons, T.P. et al. Massive cortical reorganization after sensory deafferentation in adult macaques . Science 252, 1857– 1860 (1991).

    Article  CAS  Google Scholar 

  22. Pons, T.P., Garraghty, P.E., Friedman, D.P. & Mishkin, M. Physiological evidence for serial processing in somatosensory cortex. Science 237, 417–420 (1987).

    Article  CAS  Google Scholar 

  23. Pons, T.P. in Somesthesis and the Neurobiology of the somatosensory cortex, (eds Franzén, O., Johansson, R. & Terenius, L.)187–195 (Birkhäuser, Basel, Switzerland, 1996).

    Book  Google Scholar 

  24. Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998).

    Article  CAS  Google Scholar 

  25. Pons, T.P., Garraghty, P.E., Cusick, C.G. & Kaas, J.H. . The somatotopic organization of area 2 in macaque monkeys. J. Comp. Neurol. 241, 445–466 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grants MH11950-01, MH53369-02 and NS35246-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.P. Pons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergenzinger, E., Glasier, M., Hahm, J. et al. Cortically induced thalamic plasticity in the primate somatosensory system . Nat Neurosci 1, 226–229 (1998). https://doi.org/10.1038/673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing