Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slowing of axonal transport is a very early event in the toxicity of ALS–linked SOD1 mutants to motor neurons

Abstract

Mutations in copper/zinc superoxide dismutase 1 (SOD1), primary causes of human amyotrophic lateral sclerosis (ALS), provoke motor neuron death through an unidentified toxic property. The known neurofilament–dependent slowing of axonal transport, combined with the prominent misaccumulation of neurofilaments in ALS, suggests that an important aspect of toxicity may arise from damage to transport. Here we verify this hypothesis for two SOD1 mutations linked to familial ALS. Reduced transport of selective cargoes of slow transport, especially tubulin, arises months before neurodegeneration. For one mutant, this represents the earliest detectable abnormality. Thus, damage to the cargoes or machinery of slow transport is an early feature of toxicity mediated by mutant SOD1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retardation of slow axonal transport before disease onset in SOD1G37R mice.
Figure 2: Retardation of slow axonal transport seven months before disease onset in SOD1G37R mice.
Figure 3: Absence of motor neuron degeneration in SOD1G37R mice at four months of age and no detectable pathology in SOD1G85R mice at six months of age.
Figure 4: Retardation of slow axonal transport before pathological changes in SOD1G85R mice.
Figure 5: Accumulation of βIII–tubulin in the proximal axons of SOD1 mutant mice.
Figure 6: Distinct localization of βIII–tubulin, NF–H and SOD1.
Figure 7: Fast axonal transport remains unaffected in SOD1G37R mice.

Similar content being viewed by others

References

  1. Williams, D. B. & Windebank, A. J. Peripheral Neuropathy (eds Dyck, P. J., Thomas, P. K., Griffin, J. W., Low, P. A. & Poduslo, J. F.) 1028–1050 (W.B. Saunders, Philadelphia, 1993).

    Google Scholar 

  2. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotropic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  3. Deng, H.–X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047–1051 (1993).

    Article  CAS  Google Scholar 

  4. Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112 ( 1995).

    Article  CAS  Google Scholar 

  5. Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344, 721–724 (1994).

    Article  CAS  Google Scholar 

  6. Yu, B. P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139–162 (1994).

    Article  CAS  Google Scholar 

  7. Bowling, A. C., Schulz, J. B., Brown, R. H. Jr & Beal, M. F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325 (1993).

    Article  CAS  Google Scholar 

  8. Borchelt, D. R. et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8292– 8296 (1994).

    Article  CAS  Google Scholar 

  9. Cleveland, D. W., Laing, N., Hurse, P. V. & Brown, R. H. Toxic mutants in Charcot's sclerosis. Nature 378, 342– 343 (1995).

    Article  CAS  Google Scholar 

  10. Reaume, A. B. et al. Motor neurons in Cu/Zn superoxide dismutase–deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13, 43–47 (1996).

    Article  CAS  Google Scholar 

  11. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  12. Wong, P. C. et al. An adverse property of a familial ALS–linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  13. Ripps, M. E., Huntley, G. W., Hof, P. R., Morrison, J. H. & Gordon, J. W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 92, 689–693 (1995).

    Article  CAS  Google Scholar 

  14. Bruijn, L. I. et al. ALS–linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1–containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  Google Scholar 

  15. Bruijn, L. I. et al. Mutant–SOD1 mediated Amyotrophic Lateral Sclerosis disease onset, progression and pathology is independent of wild–type protein. Science 281, 1851–1854 (1998).

    Article  CAS  Google Scholar 

  16. Williamson, T. L. et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial ALS–linked SOD1 mutant. Proc. Natl. Acad. Sci. USA 95, 9631 –9636 (1998).

    Article  CAS  Google Scholar 

  17. Banker, B.Q. Myology (eds Engel, A. G. & Banker, B. Q.) 2031– 2066 (McGraw–Hill, New York, 1986).

    Google Scholar 

  18. Hirano, A., Donnenfeld, H., Sasaki, S. & Nakano, I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 461–470 (1984).

    Article  CAS  Google Scholar 

  19. Hirano, A. et al. Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43, 471–480 ( 1984).

    Article  CAS  Google Scholar 

  20. Shibata, N. et al. Intense superoxide dismutase–1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J. Neuropathol. Exp. Neurol. 55 , 481–490 (1996).

    Article  CAS  Google Scholar 

  21. Rouleau, G. A. et al. SOD1 mutation is associated with accumulation of neurofilaments in Amyotrophic Lateral Sclerosis. Ann. Neurol. 39, 128–131 (1996).

    Article  CAS  Google Scholar 

  22. Kawamura, Y. et al. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 40, 667– 675 (1981).

    Article  CAS  Google Scholar 

  23. Willard, M. & Simon, C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 35, 551–559 ( 1983).

    Article  CAS  Google Scholar 

  24. Williamson, T. L. et al. Neurofilaments, radial growth of axons, and mechanisms of motor neuron disease. Cold Spring Harb. Symp. Quant. Biol. 61, 709–723 (1996).

    Article  CAS  Google Scholar 

  25. Côté, F., Collard, J. F. & Julien, J. P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73, 35–46 (1993).

    Article  Google Scholar 

  26. Collard, J. F., Côté, F. & Julien, J. P. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64 (1995).

    Article  CAS  Google Scholar 

  27. Hoffman, P. N. & Lasek, R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66, 351–366 ( 1975).

    Article  CAS  Google Scholar 

  28. Hirokawa, N. The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Curr. Opin. Neurobiol. 7, 605–614 (1997).

    Article  CAS  Google Scholar 

  29. Baas, P. W. Microtubules and axonal growth. Curr. Opin. Cell Biol. 9, 29–36 (1997).

    Article  CAS  Google Scholar 

  30. Lee, M. K., Rebhun, L. I. & Frankfurter, A. Posttranslational modification of class III beta–tubulin. Proc. Natl. Acad. Sci. USA 87, 7195– 7199 (1990).

    Article  CAS  Google Scholar 

  31. Lopata, M. A. & Cleveland, D. W. In vivo microtubules are copolymers of available beta–tubulin isotypes: localization of each of six vertebrate beta–tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J. Cell Biol. 105, 1707 –1720 (1987).

    Article  CAS  Google Scholar 

  32. Borchelt, D. R. et al. Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol. Dis. 5, 27–35 (1998).

    Article  CAS  Google Scholar 

  33. Mitsumoto, H., Kurahashi, K., Jacob, J. M. & McQuarrie, I. G. Retardation of fast axonal transport in wobbler mice. Muscle Nerve 16, 542–547 ( 1993).

    Article  CAS  Google Scholar 

  34. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. & Lee, V. M. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol. 139, 1307– 1315 (1997).

    Article  Google Scholar 

  35. Marszalek, J. R. et al. Neurofilament subunit NF–H modulates axonal diameter by selectively slowing neurofilament transport. J. Cell Biol. 135, 711–724 (1996).

    Article  CAS  Google Scholar 

  36. Lee, M. K., Marszalek, J. & Cleveland, D. W. Expression of a mutant neurofilament subunit causes massive, selective motor neuron death and ALS–like motor neuron disease. Neuron 13, 975–988 (1994).

    Article  CAS  Google Scholar 

  37. Hoffman, P. N., Lasek, R. J., Griffin, J. W. & Price, D. L. Slowing of the axonal transport of neurofilament proteins during development. J. Neurosci. 3, 1694–1700 (1983).

    Article  CAS  Google Scholar 

  38. Hoffman, P. N., Griffin, J. W., Gold, B. G. & Price, D. L. Slowing of neurofilament transport and the radial growth of developing nerve fibers. J. Neurosci. 5, 2920– 2929 (1985).

    Article  CAS  Google Scholar 

  39. Hoffman, P. N., Thompson, G. W., Griffin, J. W. & Price, D. L. Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J. Cell Biol. 101, 1332–1340 ( 1985).

    Article  CAS  Google Scholar 

  40. Couillard–Depres, S. et al. Protective effect of neurofilament over–expression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl. Acad. Sci. USA 95, 9626– 9630 (1998).

    Article  Google Scholar 

  41. Corson, L. B., Strain, J. J., Culotta, V. C. & Cleveland, D. W. Chaperone–facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis–linked superoxide dismutase mutants. Proc. Natl. Acad. Sci. USA 95, 6361–6366 (1998).

    Article  CAS  Google Scholar 

  42. Xu, Z., Cork, L. C., Griffin, J. W. & Cleveland, D. W. Increased expression of neurofilament subunit NF–L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33 ( 1993).

    Article  CAS  Google Scholar 

  43. Pardo, C. A. et al. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA 92, 954– 958 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Karen L. Anderson, Janet S. Folmer and Scott D. Anderson for technical assistance. This work was supported by grant NS 27036 from the NIH and a grant from the Muscular Dystrophy Association to D.W.C. T.L.W. was supported, in part, by a postdoctoral fellowship from the Muscular Dystrophy Association. Salary support for D.W.C. is provided by the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don W. Cleveland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, T., Cleveland, D. Slowing of axonal transport is a very early event in the toxicity of ALS–linked SOD1 mutants to motor neurons. Nat Neurosci 2, 50–56 (1999). https://doi.org/10.1038/4553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing