Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons

Abstract

Many excitatory synapses are thought to be postsynaptically 'silent', possessing functional NMDA but lacking functional AMPA glutamate receptors. The acquisition of AMPA receptors at silent synapses may be important in synaptic plasticity and neuronal development. Here we characterize a possible morphological correlate of silent synapses in cultured hippocampal neurons. Initially, most excitatory synapses contained NMDA receptors, but only a few contained detectable AMPA receptors. Synapses progressively acquired AMPA receptors as the cultures matured. AMPA receptor blockade increased the number, size and fluorescent intensity of AMPA receptor clusters and rapidly induced the appearance of AMPA receptors at 'silent' synapses. In contrast, NMDA receptor blockade increased the size, intensity and number of NMDA receptor clusters and decreased the number of AMPA receptor clusters, resulting in an increase in the proportion of 'silent' synapses. These results suggest that the number of silent synapses is regulated during development and by changes in synaptic activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunocytochemical detection of putative silent synapses in three–week–old, low–density hippocampal neuron cultures.
Figure 2: The number of putative silent synapses progressively decreased during development in culture.
Figure 3: Activity–dependent regulation of putative silent synapses in three–week–old, low–density hippocampal neuron cultures.
Figure 4: Statistical analysis of the pharmacological effects of APV and CNQX on hippocampal neurons at two and three weeks in culture.
Figure 5: Activity–dependent regulation of 'silent synapses' in three–week–old, high–density postnatal cultures.
Figure 6: Acute activation of 'silent synapses' in three–week–old, APV–treated neuron cultures.
Figure 7: Statistical analysis of the acute activation of 'silent synapses'.

Similar content being viewed by others

References

  1. Feldman, D. E. & Knudsen, E. I. Experience–dependent plasticity and the maturation of glutamatergic synapses. Neuron 20, 1067–1071 (1998).

    Article  CAS  Google Scholar 

  2. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473–476 ( 1997).

    Article  CAS  Google Scholar 

  3. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  4. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing–induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  5. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  6. Durand, G., Kovalchuk, Y. & Konnerth, A. Long–term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  Google Scholar 

  7. Wu, G., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

    Article  CAS  Google Scholar 

  8. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 ( 1997).

    Article  CAS  Google Scholar 

  9. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate–activated channels in mouse central neurones. Nature 307, 462–465 (1984).

    Article  CAS  Google Scholar 

  10. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage–dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309 , 261–263 (1984).

    Article  CAS  Google Scholar 

  11. Kullmann, D. M. & Asztely, F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 21, 8–14 (1998).

    Article  CAS  Google Scholar 

  12. Asztely, F., Erdemli, G. & Kullmann, D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 ( 1997).

    Article  CAS  Google Scholar 

  13. O'Brien, R. J. et al. The development of excitatory synapses in cultured spinal neurons. J. Neurosci. 17, 7339– 7350 (1997).

    Article  CAS  Google Scholar 

  14. Mammen, A. L., Huganir, R. L. & O'Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  Google Scholar 

  15. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD–95/SAP90 protein family. Neuron 20, 683–691 ( 1998).

    Article  CAS  Google Scholar 

  16. Kirsch, J. & Betz, H. Glycine–receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  Google Scholar 

  17. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).

    Article  CAS  Google Scholar 

  18. Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  Google Scholar 

  19. Rao, A. & Craig, M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  20. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity–dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  21. Baranes, D., Lopez–Garcia, J. C., Chen, M., Bailey, C. H. & Kandel, E. R. Reconstitution of the hippocampal mossy fiber and associational–commissural pathways in a novel dissociated cell culture system. Proc. Natl. Acad. Sci. USA 93, 4706–4711 (1996).

    Article  CAS  Google Scholar 

  22. Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    Article  CAS  Google Scholar 

  23. Claiborne, B. J., Amaral, D. G. & Cowan, W. M. A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J. Comp. Neurol. 246, 435–458 (1986).

    Article  CAS  Google Scholar 

  24. Chicurel, M. E. & Harris, K. M. Three–dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169– 182 (1992).

    Article  CAS  Google Scholar 

  25. Harris, E. W. & Cotman, C. W. Long–term potentiation of guinea pig mossy fiber responses is not blocked by N–methyl–D–aspartate antagonists. Neurosci. Lett. 70, 132– 137 (1986).

    Article  CAS  Google Scholar 

  26. Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long–term potentiation in single hippocampal neurons [published erratum appears in Science 251, 856, 1991]. Science 248, 1619–1624 ( 1990).

    Article  CAS  Google Scholar 

  27. Ben–Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J. L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'menage a trois'. Trends Neurosci. 20, 523–529 ( 1997).

    Article  Google Scholar 

  28. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21 , 545–559 (1998).

    Article  CAS  Google Scholar 

  29. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 ( 1998).

    Article  CAS  Google Scholar 

  30. O'Brien, R. J., Lau, L. F. & Huganir, R. L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr. Opin. Neurobiol. 8, 364–369 (1998).

    Article  CAS  Google Scholar 

  31. Ehlers, M. D., Mammen, A. L., Lau, L. F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 484–489 ( 1996).

    Article  CAS  Google Scholar 

  32. Dong, H. et al. GRIP: a synaptic PDZ domain–containing protein that interacts with AMPA receptors. Nature 386, 279– 284 (1997).

    Article  CAS  Google Scholar 

  33. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP–dependent interaction with NSF and alpha– and beta–SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  34. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    Article  CAS  Google Scholar 

  35. Song, I. et al. Interaction of the N–ethylmaleimide sensitive factor with AMPA receptors. Neuron 21, 393– 400 (1998).

    Article  CAS  Google Scholar 

  36. Banker, G. A. & Cowan, W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397– 425 (1977).

    Article  CAS  Google Scholar 

  37. Goslin, K. & Banker, G. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 251–283 (MIT Press, London, 1991).

    Google Scholar 

  38. Malgaroli, A. & Tsien, R. W. Glutamate–induced long–term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357, 134– 139 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Doherty and J. Bernhardt for technical support and D. Bury and J. Kim for assistance in preparing the manuscript. This work was supported by the Howard Hughes Medical Institute and the National Institutes of Health (R.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Huganir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, D., Zhang, X., O'Brien, R. et al. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2, 37–43 (1999). https://doi.org/10.1038/4540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing