Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radiation-induced cell cycle arrest compromised by p21 deficiency

Abstract

THE protein p21 is a dual inhibitor of cyclin-dependent kinases1á¤-3 and proliferating-cell nuclear antigen (PCNA)4, both of which are required for passage through the cell cycle. The p21 gene is under the transcriptional control of p53 (ref. 5), suggesting that p21 might promote p53-dependent cell cycle arrest or apoptosis. p21 has also been implicated in cell senescence6 and in cell-cycle withdrawal upon terminal differentiation7á¤-9. Here we investigate the role of p21 in these processes using chimaeric mice composed partly of p21-/- and partly of p21+/+ cells. Immunohistochemical studies of the p21+/+ and p21-/- components of adult small intestine indicated that deletion of p21 had no detectable effect on the migration-associated differentiation of the four principal intestinal epithelial cell lineages or on p53-dependent apoptosis following irradiation. However, p21-/- mouse embryo fibroblasts are impaired in their ability to undergo Gl arrest following DNA damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Xiong, Y. et al. Nature 366, 710–714 (1993).

    Article  ADS  Google Scholar 

  2. Gu, Y., Turck, W. & Morgan, D. O. Nature 366, 707–710 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  4. Waga, S., Hannon, G. H., Beach, D. & Stillman, B. Nature 369, 574–578 (1994).

    Article  ADS  CAS  Google Scholar 

  5. El-Deiry, W. S. et al. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  6. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M. & Smith, J. R. Expl Cell Res. 211, 90–98 (1994).

    Article  CAS  Google Scholar 

  7. Macleod, K. et al. Genes Dev. 9, 935–944 (1995).

    Article  CAS  Google Scholar 

  8. Halevy, O. et al. Science 267, 1018–1021 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Parker, S. B. et al. Science 267, 1024–1027 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Gordon, J. I. & Hermiston, M. L. Curr. Opin. Cell Biol. 6, 795–803 (1994).

    Article  CAS  Google Scholar 

  11. Hermiston, M. L. & Gordon, J. J. J. Cell Biol. 129, 489–506 (1995).

    Article  CAS  Google Scholar 

  12. Potten, C. S. Intl J. rad. Biol. 58, 925–973 (1990).

    Article  CAS  Google Scholar 

  13. Merritt, A. J. et al. Cancer Res. 54, 614–617 (1994).

    CAS  PubMed  Google Scholar 

  14. Clarke, A. R., Gledhill, S., Hooper, M. L., Bird, C. C. & Wyllie, A. H. Oncogene 9, 1767–1773 (1994).

    CAS  PubMed  Google Scholar 

  15. Kastan, M. et al. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  16. Dulic, V. et al. Cell 76, 1013–1023 (1994).

    Article  CAS  Google Scholar 

  17. Xiong, Y., Zhang, H. & Beach, D. Genes Dev. 7, 1572–1583 (1993).

    Article  CAS  Google Scholar 

  18. Li, Y.-J., Laurent-Puig, P., Salmon, R. J., Thomas, G. & Hamelin, R. Oncogene 10, 599–601 (1994).

    Google Scholar 

  19. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Capecchi, M. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Jacks, T. et al. Nature 359, 295–300 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  23. Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 113–152 (IRL, Oxford, UK, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugarolas, J., Chandrasekaran, C., Gordon, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995). https://doi.org/10.1038/377552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377552a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing