Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early functional neural networks in the developing retina

Abstract

IN the adult mammalian retina, the principal direction of information flow is along a vertical pathway from photoreceptors to retinal interneurons to ganglion cells, the output neurons of the retina. We report here, however, that initially in development, at a time when the photoreceptors are not yet even present, there are already functionally defined networks within the retina. These networks are spontaneously active rather than visually driven, and they involve horizontal rather than vertical pathways. By means of optical recording using the calcium-sensitive dye Fura-2, we have found that sets of retinal ganglion cells and amacrine cells, a type of retinal interneuron, undergo synchronized oscillations in intracellular calcium concentration. These oscillations are highly correlated among subgroups of neighbouring cells, and spread in a wave-like fashion tangentially across the retina. Thus, in development of retinal circuitry, the initial patterning of neuronal function occurs in the horizontal domain before the adult pattern of vertical information transfer emerges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meister, M., Wong, R. O. L., Baylor, D. A. & Shatz, C. J. Science 252, 939–943 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Wong, R. O. L., Meister, M. & Shatz, C. J. Neuron 11, 923–938 (1993).

    Article  CAS  Google Scholar 

  3. Vaney, D. I. Prog. Ret. Res. 9, 49–100 (1990).

    Article  CAS  Google Scholar 

  4. Henderson, Z., Finlay, B. L. & Wickler, K. C. J. Neurosci. 8, 1194–1205 (1988).

    Article  CAS  Google Scholar 

  5. Greiner, J. V. & Weidman, T. A. Expl Eye Res. 33, 315–332 (1981).

    Article  CAS  Google Scholar 

  6. Robinson, S. R. in Vision and Visual Dysfunction Vol. 3 (ed. Cronly-Dillion, J. R.) 69–128 (MacMillan, London, 1991).

    Google Scholar 

  7. Ramoa, A. S., Campbell, G. & Shatz, C. J. J. Neurosci. 8, 4239–4261 (1988).

    Article  CAS  Google Scholar 

  8. Penn, A. A., Wong, R. O. L. & Shatz, C. J. J. Neurosci. 14, 3805–3815 (1994).

    Article  CAS  Google Scholar 

  9. Pow, D. V., Crook, D. K. & Wong, R. O. L. Vis. Neurosci. 11, 1115–1134 (1994).

    Article  CAS  Google Scholar 

  10. Redburn, D. A., Agarwal, S. H., Messersmith, E. K. & Mitchell, C. K. Neurochem. Res. 17, 61–66 (1992).

    Article  CAS  Google Scholar 

  11. Zorumski, C. F. & Liu, L. T. Prog. Neurobiol. 39, 295–336 (1992).

    Article  CAS  Google Scholar 

  12. Peinado, A., Yuste, R. & Katz, L. C. Neuron 10, 103–114 (1993).

    Article  CAS  Google Scholar 

  13. Yuste, R., Peinado, A. & Katz, L. C. Science 257, 665–69 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Science 247, 470–473 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Finkbeiner, S. Neuron 8, 1101–1108 (1992).

    Article  CAS  Google Scholar 

  16. Charles, A. C., Merrill, J. E., Dirksen, E. R. & Sanderson, M. J. Neuron 6, 983–992 (1991).

    Article  CAS  Google Scholar 

  17. Boitano, S., Dirksen, E. R. & Sanderson, M. J. Science 258, 292–295 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Constaintine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  Google Scholar 

  19. Cook, J. Trends Neurosci. 14, 397–401 (1991).

    Article  CAS  Google Scholar 

  20. Goodman, C. & Shatz, C. J. Cell/Neuron 72 (suppl.), 77–98 (1993).

    Google Scholar 

  21. Katz, L. C. Curr. Opin. Neurobiol. 3, 93–99 (1993).

    Article  CAS  Google Scholar 

  22. Wong, R. O. L. Curr. Opin. Neurobiol. 3, 595–601 (1993).

    Article  CAS  Google Scholar 

  23. Sheng, M. & Greenberg, M. E. Neuron 4, 477–485 (1990).

    Article  CAS  Google Scholar 

  24. Murphy, T. H., Worley, P. F. & Baraban, J. M. Neuron 7, 625–635 (1991).

    Article  CAS  Google Scholar 

  25. Ginty, D. D., Bading, H. & Greeberg, M. E. Curr. Opin. Neurobiol. 2, 312–316 (1992).

    Article  CAS  Google Scholar 

  26. Bading, H., Ginty, D. D. & Greenberg, M. E. Science 260, 181–186 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Peunova, N. & Enikolopov, G. Nature 364, 450–453 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Spitzer, N. C. Trends Neurosci. 17, 115–118 (1994).

    Article  CAS  Google Scholar 

  29. Yuste, R. & Katz, L. C. Neuron 6, 333–344 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, R., Chernjavsky, A., Smith, S. et al. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995). https://doi.org/10.1038/374716a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374716a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing