Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development

Induction, assembly, maturation and maintenance of a postsynaptic apparatus

Key Points

  • The neuromuscular junction (NMJ) is one of the best models to study the induction, assembly, maturation and maintenance of a postsynaptic apparatus. The three most widely appreciated experimental advantages of the NMJ are its size, its simplicity and its accessibility.

  • Acetylcholine receptors (AChRs) are inserted at multiple points into the embryonic myotube membrane. As the NMJ develops, receptor density underneath the nerve increases and the number of extrasynaptic receptors is very small. Several mechanisms account for this phenomenon: some AChRs redistribute in the plane of the membrane, the metabolic stability of AChRs increases after clustering, myonuclei associated with the postsynaptic membrane become transcriptionally specialized to express AChRs, and AChR transcription is suppressed in non-synaptic nuclei. This reorganization depends on chemical influences from the motor nerve.

  • Several molecules that are responsible for postsynaptic reorganization have been identified. Their identification has led to a working model of how AChRs are clustered at the developing NMJ. In this model, the nerve releases a protein called agrin, which signals through a muscle-specific tyrosine kinase known as MuSK. MuSK then acts through an effector protein, rapsyn, to promote AChR clustering.

  • Although this basic model has received significant experimental support, there are other factors that affect NMJ development. Neuregulin and its ErbB receptor (another tyrosine kinase) also affect AChR clustering, but the interaction of these proteins with the agrin–MuSK–rapsyn pathway is unclear.

  • The embryonic NMJs are very different from the adult NMJs. The junction changes from a simple oval plaque to a pretzel-like set of branches, and the junctional membrane changes from a flat sheet to an invaginated surface with gutters and folds. Moreover, the composition of the basal lamina and the cytoskeletal apparatus change as the NMJ matures. Finally, a shift in AChR subunit composition leads to a change in their Ca2+ permeability, and ion- and ligand-gated channels segregate into discrete alternating domains. The mechanisms that underlie each of these transformations have only begun to be uncovered.

Abstract

The postsynaptic apparatus of the skeletal neuromuscular junction, like that of other synapses, contains a high-density patch of neurotransmitter receptors that is closely associated with a variety of extracellular, transmembrane and cytoplasmic proteins that have adhesive, structural and signalling roles. The postsynaptic apparatus is organized by signals from the presynaptic nerve terminal. It changes in shape, size and molecular architecture as it matures. Once mature, it can be maintained for the life of the organism, but has the capacity for remodelling in response to altered input. The molecular and cellular mechanisms that govern each of these stages are now being elucidated by a combination of microscopic and genetic methods, allowing the neuromuscular junction to serve as a model for smaller and less-accessible central synapses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The neuromuscular junction.
Figure 2: Clustering of AChRs as the neuromuscular junction forms.
Figure 3: Possible roles for neuregulin in postsynaptic differentiation.
Figure 4: Genetic analysis of early events in AChR clustering.
Figure 5: Maturation of the postsynaptic apparatus.
Figure 6: Turnover of AChRs in active, inactive and mutant muscles.

Similar content being viewed by others

References

  1. Jessell, T. M. & Sanes, J. R. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Cowan, W. M., Sudhof, T. C. & Stevens, C. F. (eds) Synapses (Johns Hopkins Univ. Press, Baltimore, 2001).

    Google Scholar 

  3. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).A comprehensive review of NMJ development, covering topics not included here, such as presynaptic development, synapse elimination, regeneration and comparison with neuron–neuron synapses.

    Article  CAS  PubMed  Google Scholar 

  4. Langley, J. On nerve-endings and on special excitable substances in cells. Proc. R. Soc. Lond. B 78, 170–194 (1906).

    Article  CAS  Google Scholar 

  5. Cartaud, J. et al. The Torpedo electrocyte: a model system to study membrane–cytoskeleton interactions at the postsynaptic membrane. Microsc. Res. Tech. 49, 73–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P. & Hall, Z. W. Binding of α–bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. Natl Acad. Sci. USA 69, 147–151 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, C. Y., Tseng, L. F. & Chin, T. H. Influence of denervation on the localization of neurotoxins from clapid venom in rat diaphragm. Nature 215, 1177–1178 (1967).

    Article  CAS  PubMed  Google Scholar 

  8. Fambrough, D. M. Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165–227 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Burden, S. J. The formation of neuromuscular synapses. Genes Dev. 12, 133–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Duclert, A. & Changeux, J. P. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol. Rev. 75, 339–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Huh, K. H. & Fuhrer, C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol. Neurobiol. (in the press).

  12. Edwards, C. & Frisch, H. L. A model for the localization of acetylcholine receptors at the muscle endplate. J. Neurobiol. 7, 377–381 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Young, S. H. & Poo, M. M. Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole. J. Neurosci. 3, 225–231 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merlie, J. P. & Sanes, J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317, 66–68 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Schaeffer, L., De Kerchove d'Exaerde, A. & Changeux, J. P. Targeting transcription to the neuromuscular synapse. Neuron 31, 15–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, M. J. & Cohen, M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (Lond.) 268, 757–773 (1977).

    Article  CAS  Google Scholar 

  17. Frank, E. & Fischbach, G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J. Cell Biol. 83, 143–158 (1979).References 16 and 17 are the classic papers showing that motor axons organize postsynaptic differentiation.

    Article  CAS  PubMed  Google Scholar 

  18. Ziskind-Conhaim, L., Geffen, I. & Hall, Z. W. Redistribution of acetylcholine receptors on developing rat myotubes. J. Neurosci. 4, 2346–2349 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Role, L. W., Mattossian, V. R., O'Brien, R. J. & Fischbach, G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J. Neurosci. 5, 2197–2204 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuromi, H. & Kidokoro, Y. Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures. Dev. Biol. 103, 53–61 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S. & Fischbach, G. D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Peng, H. B., Baker, L. P. & Chen, Q. Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor. Neuron 6, 237–246 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Oh, T. H. & Markelonis, G. J. Chicken serum transferrin duplicates the myotrophic effects of sciatin on cultured muscle cells. J. Neurosci. Res. 8, 535–545 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Knaack, D., Shen, I., Salpeter, M. M. & Podleski, T. R. Selective effects of ascorbic acid on acetylcholine receptor number and distribution. J. Cell Biol. 102, 795–802 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Vogel, Z. et al. Laminin induces acetylcholine receptor aggregation on cultured myotubes and enhances the receptor aggregation activity of a neuronal factor. J. Neurosci. 3, 1058–1068 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fontaine, B., Klarsfeld, A. & Changeux, J. P. Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor α-subunit mRNA levels by distinct intracellular pathways. J. Cell Biol. 105, 1337–1342 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, H., Muramatsu, T., Halfter, W., Tsim, K. W. K. & Peng, H. B. A role of midkine in the development of the neuromuscular junction. Mol. Cell. Neurosci. 10, 56–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. McMahan. U. J. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55, 407–418 (1990).The first summary of McMahan's evidence that agrin is a crucial nerve-derived organizer of postsynaptic differentiation at the neuromuscular junction.

    Article  CAS  PubMed  Google Scholar 

  29. Bowe, M. A. & Fallon, J. R. The role of agrin in synapse formation. Annu. Rev. Neurosci. 18, 443–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. McMahan, U. J. et al. Agrin isoforms and their role in synaptogenesis. Curr. Opin. Cell Biol. 4, 869–874 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Wallace, B. G. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J. Neurosci. 9, 1294–1302 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).Use of gene targeting to show a crucial role for agrin in formation of the postsynaptic apparatus in vivo.

    Article  CAS  PubMed  Google Scholar 

  33. Cohen, I., Rimer, M., Lømo, T. & McMahan, U. J. Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol. Cell. Neurosci. 9, 237–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Meier, T. et al. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J. Neurosci. 17, 6534–6544 (1997).References 33 and 34 are gain-of-function studies showing that agrin can substitute for the nerve in organizing an elaborate postsynaptic apparatus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bezakova, G. & Lømo, T. Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AChR) aggregates in skeletal muscle fibers. J. Cell Biol. 153, 1453–1463 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gesemann, M., Denzer, A. J. & Ruegg, M. A. Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. J. Cell Biol. 128, 625–636 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Hoch, W., Campanelli, J. T., Harrison, S. & Scheller, R. H. Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. EMBO J. 13, 2814–2821 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burgess, R. W., Nguyen, Q. T., Son, Y.-J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).Isoform-specific mutants and analysis of chimeric synapses showed that the agrin required for NMJ formation is derived from the motor neuron, not the muscle.

    Article  CAS  PubMed  Google Scholar 

  39. Martin, P. T. & Sanes, J. R. Role for a synapse-specific carbohydrate in agrin-induced clustering of acetylcholine receptors. Neuron 14, 743–754 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Sanes, J. R. et al. Agrin receptors at the skeletal neuromuscular junction. Ann. NY Acad. Sci. 841, 1–13 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Burkin, D. J., Gu, M., Hodges, B. L., Campanelli, J. T. & Kaufman, S. J. A functional role for specific spliced variants of the α7β1 integrin in acetylcholine receptor clustering. J. Cell Biol. 143, 1067–1075 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sugiyama, J., Bowen, D. C. & Hall, Z. W. Dystroglycan binds nerve and muscle agrin. Neuron 13, 103–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Gee, S. H., Montanaro, F., Lindenbaum, M. H. & Carbonetto, S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675–686 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Campanelli, J. T., Roberds, S. L., Campbell, K. P. & Scheller, R. H. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77, 663–674 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Bowe, M. A., Deyst, K. A., Leszyk, J. D. & Fallon, J. R. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12, 1173–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Jennings, C. G. B., Dyer, S. M. & Burden, S. J. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc. Natl Acad. Sci. USA 90, 2895–2899 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valenzuela, D. M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Daggett, D. F. et al. The role of an agrin–growth factor interaction in ACh receptor clustering. Mol. Cell. Neurosci. 8, 272–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Denzer, A. J. et al. Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J. 17, 335–343 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martin, P. T., Kaufman, S. J., Kramer, R. H. & Sanes, J. R. Synaptic integrins in developing, adult, and mutant muscle: selective association of α1, α7A, and α7B integrins with the neuromuscular junction. Dev. Biol. 174, 125–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, P. T. & Sanes, J. R. Integrins mediate adhesion to agrin and modulate agrin signaling. Development 124, 3909–3917 (1997).

    CAS  PubMed  Google Scholar 

  52. DeChiara, T. M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).The use of gene targeting to show a crucial role for MuSK in formation of the postsynaptic apparatus in vivo.

    Article  CAS  PubMed  Google Scholar 

  53. Glass, D. J. et al. Agrin acts via a MuSK receptor complex. Cell 85, 513–523 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Glass, D. J. et al. MuSK kinase domain sufficient for phosphorylation but not clustering of acetylcholine receptors. Proc. Natl Acad. Sci. USA 94, 8848–8853 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, H., Glass, D., Yancopoulos, G. & Sanes, J. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 146, 1133–1146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moscoso, L. M., Cremer, H. & Sanes, J. R. Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci. 18, 1465–1477 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patton, B. L. et al. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nature Neurosci. 4, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Grady, R. M. et al. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25, 279–293 (2000).This paper and references 59 and 150 report on the use of mutant muscles and cell lines to show that components of the dystrophin–glycoprotein complex are dispensible for AChR clustering, but crucial for its maintenance.

    Article  CAS  PubMed  Google Scholar 

  59. Jacobson, C., Cote, P. D., Rossi, S. G., Rotundo, R. L. & Carbonetto, S. The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. J. Cell Biol. 152, 435–450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gesemann, M. et al. Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 16, 755–767 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Xie, M. H., Yuan, J., Adams, C. & Gurney, A. Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identificaiton of agonist ScFv. Nature Biotechnol. 15, 768–771 (1997).

    Article  CAS  Google Scholar 

  62. Hopf, C. & Hoch, W. Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J. Biol. Chem. 273, 6467–6473 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Jones, G., Moore, C., Hashemolhosseini, S. & Brenner, H. R. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J. Neurosci. 19, 3376–3383 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Noakes, P. G., Phillips, W. D., Hanley, T. A., Sanes, J. R. & Merlie, J. P. 43K protein and acetylcholine receptors colocalize during the initial stages of neuromuscular synapse formation in vivo. Dev. Biol. 155, 275–280 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. LaRochelle, W. J. & Froehner, S. C. Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J. Biol. Chem. 261, 5270–5274 (1986).

    CAS  PubMed  Google Scholar 

  66. Froehner, S. C., Luetje, C. W., Scotland, P. B. & Patrick, J. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron 5, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Phillips, W. D. et al. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kilodalton protein. Science 251, 568–570 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).The use of gene targeting to show an important role for rapsyn in the formation of the postsynaptic apparatus in vivo.

    Article  CAS  PubMed  Google Scholar 

  69. Gillespie, S. K., Balasubramanian, S., Fung, E. T. & Huganir, R. L. Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 16, 953–962 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Apel, E. D., Glass, D. J., Moscoso, L. M., Yancopoulos, G. D. & Sanes, J. R. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 623–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Ono, F., Higashijima, S., Shcherbatko, A., Fetcho, J. R. & Brehm, P. Paralytic zebrafish lacking acetylcholine receptors fail to localize rapsyn clusters to the synapse. J. Neurosci. 21, 5439–5448 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grow, W. A. & Gordon, H. Acetylcholine receptors are required for postsynaptic aggregation driven by the agrin signalling pathway. Eur. J. Neurosci. 12, 467–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Missias, A. C. et al. Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an 'adult' acetylcholine receptor subunit. Development 124, 5075–5086 (1997).

    CAS  PubMed  Google Scholar 

  74. Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Trinidad, J. C., Fischbach, G. D. & Cohen, J. B. The Agrin/MuSK signaling pathway is spatially segregated from the neuregulin/ErbB receptor signaling pathway at the neuromuscular junction. J. Neurosci. 20, 8762–8770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moscoso, L. M. et al. Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Dev. Biol. 172, 158–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Rimer, M., Cohen, I., Lømo, T., Burden, S. J. & McMahan, U. J. Neuregulins and ErbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol. Cell. Neurosci. 12, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Zhu, X., Lai, C., Thomas, S. & Burden, S. J. Neuregulin receptors, ErbB3 and ErbB4, are localized at neuromuscular synapses. EMBO J. 14, 5842–5848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Altiok, N., Bessereau, J. L. & Changeux, J. P. ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate. EMBO J. 14, 4258–4266 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones, G. et al. Substrate-bound agrin induces expression of acetylcholine receptor ɛ-subunit gene in cultured mammalian muscle cells. Proc. Natl Acad. Sci. USA 93, 5985–5990 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gramolini, A. O. et al. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J. Biol. Chem. 273, 736–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Woldeyesus, M. T. et al. Peripheral nervous system defects in ErbB2 mutants following genetic rescue of heart development. Genes Dev. 13, 2538–2548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolpowitz, D. et al. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Lin, W. et al. Aberrant development of motor axons and neuromuscular synapses in ErbB2-deficient mice. Proc. Natl Acad. Sci. USA 97, 1299–1304 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).This paper, along with references 98 and 99 , used genetic methods to show agrin- and nerve-independent initiation of postsynaptic differentiation.

    Article  CAS  PubMed  Google Scholar 

  86. Garratt, A. N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–996 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Sandrock, A. W. Jr et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 599–603 (1997).

    Article  PubMed  Google Scholar 

  88. Gautam, M., DeChiara, T. M., Glass, D. J., Yancopoulos, G. D. & Sanes, J. R. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res. Dev. Brain Res. 114, 171–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Meier, T. et al. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J. Cell Biol. 141, 715–726 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Briguet, A. & Ruegg, M. A. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J. Neurosci. 20, 5989–5996 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Creazzo, T. L. & Sohal, G. S. Neural control of embryonic acetylcholine receptor in skeletal muscle. Cell Tissue Res. 228, 1–12 (1983).

    Article  CAS  PubMed  Google Scholar 

  92. Harris, A. J. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. Phil. Trans. R. Soc. Lond. B 293, 287–314 (1981).A classic and long-maligned demonstration that AChR clusters form, and are arranged in an end-plate band, even in aneural muscle.

    Article  CAS  Google Scholar 

  93. Dahm, L. M. & Landmesser, L. T. The regulation of synaptogenesis during normal development and following activity blockade. J. Neurosci. 11, 238–255 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Phillips, W. D., Lai, K. & Bennett, M. R. Spatial distribution and size of acetylcholine receptor clusters determined by motor nerves in developing chick muscles. J. Neurocytol. 14, 309–325 (1985).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, D. W. & Westerfield, M. Clustering of muscle acetylcholine receptors requires motoneurons in live embryos, but not in cell culture. J. Neurosci. 12, 1859–1866 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, X., Li, W., Prescott, E. D., Burden, S. J. & Wang, J. C. DNA topoisomerase IIβ and neural development. Science 287, 131–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kues, W. A., Brenner, H. R., Sakmann, B. & Witzemann, V. Local neurotrophic repression of gene transcripts encoding fetal AChRs at rat neuromuscular synapses. J. Cell Biol. 130, 949–957 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Dai, Z. & Peng, H. B. A role of tyrosine phosphatase in acetylcholine receptor cluster dispersal and formation. J. Cell Biol. 141, 1613–1624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Parkhomovskiy, N., Kammesheidt, A. & Martin, P. T. N-Acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. Mol. Cell. Neurosci. 15, 380–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Herbst, R. & Burden, S. J. The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J. 19, 67–77 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Apel, E. D., Lewis, R. M., Grady, R. M. & Sanes, J. R. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem. 275, 31986–31995 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Strochlic, L. et al. MAGI-1c: a synaptic MAGUK interacting with MuSK at the vertebrate neuromuscular junction. J. Cell Biol. 153, 1127–1132 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bloch, R. J. & Pumplin, D. W. Molecular events in synaptogenesis: nerve–muscle adhesion and postsynaptic differentiation. Am. J. Physiol. 254, C345–C364 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Meier, T., Perez, G. M. & Wallace, B. G. Immobilization of nicotinic acetylcholine receptors in mouse C2 myotubes by agrin-induced protein tyrosine phosphorylation. J. Cell Biol. 131, 441–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Dai, Z., Luo, X., Xie, H. & Peng, H. B. The actin-driven movement and formation of acetylcholine receptor clusters. J. Cell Biol. 150, 1321–1334 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weston, C., Yee, B., Hod, E. & Prives, J. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J. Cell Biol. 150, 205–212 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Uhm, C. S., Neuhuber, B., Lowe, B., Crocker, V. & Daniels, M. P. Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes. J. Neurosci. (in the press).

  111. Yoshihara, C. M. & Hall, Z. W. Increase expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes. J. Cell Biol. 122, 169–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Han, H., Noakes, P. G. & Phillips, W. D. Overexpression of rapsyn inhibits agrin-induced acetylcholine receptor clustering in muscle cells. J. Neurocytol. 28, 763–775 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Montanaro, F. et al. Laminin and α-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway. J. Neurosci. 18, 1250–1260 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sugiyama, J. E., Glass, D. J., Yancopoulos, G. D. & Hall, Z. W. Laminin-induced acetylcholine receptor clustering: an alternative pathway. J. Cell Biol 139, 181–191 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McDearmon, E. L., Combs, A. C. & Ervasti, J. M. Differential Vicia villosa agglutinin reactivity identifies three distinct dystroglycan complexes in skeletal muscle. J. Biol. Chem. 276, 35078–35086 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Smith, M. A. & Slater, C. R. Spatial distribution of acetylcholine receptors at developing chick neuromuscular junctions. J. Neurocytol. 12, 993–1005 (1983).

    Article  CAS  PubMed  Google Scholar 

  117. Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nature Neurosci. 2, 597–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Wood, S. J. & Slater, C. R. Safety factor at the neuromuscular junction. Prog. Neurobiol. 64, 393–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Caldwell, J. H. Clustering of sodium channels at the neuromuscular junction. Microsc. Res. Tech. 49, 84–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Steinbach, J. H. Developmental changes in acetylcholine receptors at rat skeletal neuromuscular junctions. Dev. Biol. 84, 267–276 (1981).

    Article  CAS  PubMed  Google Scholar 

  121. Slater, C. R. Postnatal maturation of nerve–muscle junctions in hindlimb muscles of the mouse. Dev. Biol. 94, 11–22 (1982).

    Article  CAS  PubMed  Google Scholar 

  122. Bewick, G. S., Young, C. & Slater, C. R. Spatial relationships of utrophin, dystrophin, β-dystroglycan and β-spectrin to acetylcholine receptor clusters during postnatal maturation of the rat neuromuscular junction. J. Neurocytol. 25, 367–379 (1996).

    CAS  PubMed  Google Scholar 

  123. Marques, M. J., Conchello, J. A. & Lichtman, J. W. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 20, 3663–3675 (2000).A novel imaging method used to follow postnatal changes in postsynaptic topography, including acquisition of gutters, folds and branches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Balice-Gordon, R. J., Breedlove, S. M., Bernstein, S. & Lichtman, J. W. Neuromuscular junctions shrink and expand as muscle fiber size is manipulated: in vivo observations in the androgen-sensitive bulbocavernosus muscle of mice. J. Neurosci. 10, 2660–2671 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Balice-Gordon, R. J. & Lichtman, J. W. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Balice-Gordon, R. J., Chua, C. K., Nelson, C. C. & Lichtman, J. W. Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron 11, 801–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Desaki, J. & Uehara, Y. Formation and maturation of subneural apparatuses at neuromuscular junctions in postnatal rats: a scanning and transmission electron microscopical study. Dev. Biol. 119, 390–401 (1987).

    Article  CAS  PubMed  Google Scholar 

  129. Flucher, B. E. & Daniels, M. P. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kDa protein. Neuron 3, 163–175 (1989).

    Article  CAS  PubMed  Google Scholar 

  130. Covault, J. & Sanes, J. R. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J. Cell Biol. 102, 716–730 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Kramarcy, N. R. & Sealock, R. Syntrophin isoforms at the neuromuscular junction: developmental time course and differential localization. Mol. Cell. Neurosci. 15, 262–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Sanes, J. R., Feldman, D. H., Cheney, J. M. & Lawrence, J. C. Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J. Neurosci. 4, 464–473 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sunderland, W. J., Son, Y. J., Miner, J. H., Sanes, J. R. & Carlson, S. S. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (α4ß2γ1) with non-erythroid spectrin. J. Neurosci. 20, 1009–1019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grady, R. M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Deconinck, A. E. et al. Utrophin–dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411 (1986).

    Article  CAS  PubMed  Google Scholar 

  137. Gu, Y. & Hall, Z. W. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1, 117–125 (1988).

    Article  CAS  PubMed  Google Scholar 

  138. Missias, A. C., Chu, G. C., Klicke, B., Sanes, J. R. & Merlie, J. P. Maturation of the acetylcholine receptor in developing skeletal muscle: regulation of the AChR γ-to-ɛ switch. Dev. Biol. 179, 223–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Villarroel, A. & Sakmann, B. Calcium permeability increase of endplate channels in rat muscle during postnatal development. J. Physiol. (Lond.) 496, 331–338 (1996).

    Article  CAS  Google Scholar 

  140. Witzemann, V. et al. Acetylcholine receptor ɛ-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc. Natl Acad. Sci. USA 93, 13286–13291 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sanes, J. R. et al. Selective expression of an acetylcholine receptor–lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113, 1181–1191 (1991).

    CAS  PubMed  Google Scholar 

  142. Brenner, H. R., Witzemann, V. & Sakmann, B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 344, 544–547 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Si, J., Miller, D. S. & Mei, L. Identification of an element required for acetylcholine receptor-inducing activity (ARIA)-induced expression of the acetylcholine receptor ɛ subunit gene. J. Biol. Chem. 272, 10367–10371 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Slater, C. R. Neural influence on the postnatal changes in acetylcholine receptor distribution at nerve–muscle junctions in the mouse. Dev. Biol. 94, 23–30 (1982).

    Article  CAS  PubMed  Google Scholar 

  145. Moss, B. L. & Schuetze, S. M. Development of rat soleus endplate membrane following denervation at birth. J. Neurobiol. 18, 101–118 (1987).

    Article  CAS  PubMed  Google Scholar 

  146. Frank, E., Gautvik, K. & Sommerschild, H. Persistence of junctional acetylcholine receptors following denervation. Cold Spring Harb. Symp. Quant. Biol. 40, 275–281 (1976).

    Article  CAS  PubMed  Google Scholar 

  147. Bloch, R. J., Steinbach, J. H., Merlie, J. P. & Heinemann, S. Collagenase digestion alters the organization and turnover of junctional acetylcholine receptors. Neurosci. Lett. 66, 113–119 (1986).

    Article  CAS  PubMed  Google Scholar 

  148. Sala, C., O'Malley, J., Xu, R., Fumagalli, G. & Salpeter, M. M. ɛ Subunit-containing acetylcholine receptors in myotubes belong to the slowly degrading population. J. Neurosci. 17, 8937–8944 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Caroni, P., Rotzler, S., Britt, J. C. & Brenner, H. R. Calcium influx and protein phosphorylation mediate the metabolic stabilization of synaptic acetylcholine receptors in muscle. J. Neurosci. 13, 1315–1325 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Adams, M. E. et al. Absence of α-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J. Cell Biol. 150, 1385–1398 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fuhrer, C. & Hall, Z. W. Functional interaction of Src family kinases with the acetycholine receptor in C2 myotubes. J. Biol. Chem. 271, 32474–32481 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Meyer, G. & Wallace, B. G. Recruitment of a nicotinic acetylcholine receptor mutant lacking cytoplasmic tyrosine residues in its β subunit into agrin-induced aggregates. Mol. Cell. Neurosci. 11, 324–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Mittaud, P., Marangi, P. A., Erb-Vogtli, S. & Fuhrer, C. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires rapsyn and correlates with acetylcholine receptor clustering. J. Biol. Chem. 276, 14505–14513 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Mohamed, A. S., Rivas-Plata, K. A., Kraas, J. R., Saleh, S. M. & Swope, S. L. Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J. Neurosci. 21, 3806–3818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Borges, L. S. & Ferns, M. Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J. Cell Biol. 153, 1–12 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Smith, C. L., Mittaud, P., Prescott, E. D., Fuhrer, C. & Burden, S. J. Src, fyn, and yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J. Neurosci. 21, 3151–3160 (2001).Src-family kinases had been implicated in AChR clustering. This paper shows that they are dispensable for early steps, but modulate cluster stability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gonzalez, M. et al. Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 567–583 (1999).Neurotrophins and their Trk receptor kinases might have roles similar to those of Src kinases in modulating postsynaptic maturation or stabilization.

    Article  CAS  PubMed  Google Scholar 

  158. Belluardo, N. et al. Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Mol. Cell. Neurosci. 18, 56–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Wells, D. G., McKechnie, B. A., Kelkar, S. & Fallon, J. R. Neurotrophins regulate agrin-induced postsynaptic differentiation. Proc. Natl Acad. Sci. USA 96, 1112–1117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Balasubramanian, S., Fung, E. T. & Huganir, R. L. Characterization of the tyrosine phosphorylation and distribution of dystrobrevin isoforms. FEBS Lett. 432, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Akaaboune, M., Culican, S. M., Turney, S. G. & Lichtman, J. W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).A new method used to show rapid and marked effects of electrical activity on AChR stability in the postsynaptic membrane, indicating mechanisms for linking activity to synaptic architecture.

    Article  CAS  PubMed  Google Scholar 

  162. Akaaboune, M., Wilkinson, R. S. & Lichtman, J. W. Reversible photo-unbinding of AChR ligand allows study of receptor mobility at the neuromuscular junction in vivo. Soc. Neurosci. Abstr. 26, 23 (2000).

    Google Scholar 

  163. Loring, R. & Salpeter, M. M. Denervation increases turnover rate of junctional acetylcholine receptors. Proc. Natl Acad. Sci. USA 77, 2293–2298 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shyng, S. L. & Salpeter, M. M. Effect of reinnervation on the degradation rate of junctional acetylcholine receptors synthesized in denervated skeletal muscles. J. Neurosci. 10, 3905–3915 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carroll, R. C., Beattie, E. C., Von Zastrow, M. & Malenka, R. C. Role of AMPA receptor endocytosis in synaptic plasticity. Nature Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  Google Scholar 

  166. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Gensler, S. et al. Assembly and clustering of acetylcholine receptors containing GFP-tagged ɛ or γ subunits: selective targeting to the neuromuscular junction in vivo. Eur. J. Biochem. 268, 2209–2217 (2001).Example of a new reagent that will allow the imaging of postsynaptic development in vivo.

    Article  CAS  PubMed  Google Scholar 

  169. Keller-Peck, C. R. et al. Asynchronous synapse elimination in neonatal motor units. Studies using GFP transgenic mice. Neuron 31, 381–394 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health for support, and R. M. Grady for figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Sanes.

Related links

Related links

DATABASES

GenBank

LocusLink

acetylcholinesterase

AChRs

agrin

ankyrin

α-bungarotoxin

Cdc42

dystrobrevin

dystroglycan

ErbB kinases

GA-repeat-binding protein

gephyrin

integrin α7

integrin αv

integrin β1

laminin α2

laminin α4

laminin α5

laminin β2

laminin γ1

MuSK

myogenin

neuregulin

pleiotrophin

Rac

rapsyn

α1-syntrophin

utrophin

OMIM

muscular dystrophy

Glossary

LAMININ

Glycoprotein that is the main constituent of basement membranes. It mediates the attachment, migration and organization of cells into tissues during development.

MIDKINE

A heparin-binding growth factor of the transforming growth factor-β superfamily. Midkine was originally described as being associated with tooth morphogenesis induced by epithelial–mesenchyme interactions.

PLEIOTROPHIN

A heparin-binding mitogenic protein that induces process extension in neurons and osteoblasts.

HEPARAN SULPHATE

A glycosaminoglycan that consists of repeated units of hexuronic acid and glucosamine residues. They usually attach to proteins through a xylose residue to form proteoglycans.

DOMINANT NEGATIVE

Describes a mutant molecule that is capable of forming a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

CONDITIONAL MUTAGENESIS

The generation of mutant animals in which the mutation can be selectively targeted to specific organs (or cell types within an organ) or induced at a specific developmental stage.

AUTOCRINE

An agent that acts on the cell that produced it.

RHO-GTPASE

A Ras-related GTPase that is involved in controlling the polymerization of actin.

FILOPODIA

Long, thin protrusions at the periphery of migrating cells and growth cones. They are rich in bundles of F-actin.

LECTINS

Sugar-binding proteins that tend to agglutinate cells. Concanavalin A is a widely used example.

MUSCULAR DYSTROPHY

A group of genetic diseases characterized by progressive weakness and degeneration of the skeletal muscles, which control movement. The main forms of muscular dystrophy include myotonic, Duchenne and Becker.

SRC

A cytoplasmic tyrosine kinase that was first identified as a transforming oncogene in an avian retrovirus. This kinase is the prototypical kinase from which Src-homology regions were first described.

FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING

A method used to measure the lateral diffusion of membrane elements. It requires tagging of the molecule of interest with a fluorescent marker, photobleaching of the label with a pulse of laser light, and a subsequent measure of the rate of fluorescence recovery into the bleached area as other labelled molecules move into it.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanes, J., Lichtman, J. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2, 791–805 (2001). https://doi.org/10.1038/35097557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing