Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuropsychology of fear and loathing

Key Points

  • Ideas about emotion in neuroscience and psychology have been dominated by a debate on whether emotion can be encompassed within a single unifying model. In neuroscience this approach is epitomised by the limbic system theory, and in psychology by dimensional models of emotion. Comparative research has gradually eroded the limbic model, and some scientists have proposed that certain individual emotions are represented separately in the brain. Evidence from humans consistent with this proposal has been obtained by showing that signals of fear and disgust may be processed by distinct neural substrates. The focus of this article is to review this research and its implications for theories of emotion.

  • The amygdala is involved in processing facial signals of fear and in fear conditioning. This conclusion has emerged from evidence converging from the analysis of animals with amygdala lesions, from patients with bilateral amygdala damage and from functional imaging experiments in healthy individuals. Research also shows that the amygdala is involved in coding fear cues from other sensory modalities, although in the human literature this is currently under debate.

  • Studies on patients and functional imaging research show a link between the recognition of facial expressions of disgust and the insula-basal ganglia regions. Whether these same brain areas underlie the coding of disgust signals from multiple sensory modalities is only beginning to be addressed.

  • The double dissociation between the recognition of fear and disgust shown in the patient studies and functional imaging research is difficult to reconcile with a number of current models of emotion, but in particular models based on just two dimensions. These two-dimensional models were proposed to account for the structure of emotion and they are reasonably successful in describing the measures of self-reported emotion. However, it is unclear that such models can account for specific deficits in processing fear and disgust. In future it may be more useful for emotion research to focus on causal mechanisms rather than descriptive taxonomies.

Abstract

For over 60 years, ideas about emotion in neuroscience and psychology have been dominated by a debate on whether emotion can be encompassed within a single, unifying model. In neuroscience, this approach is epitomized by the limbic system theory and, in psychology, by dimensional models of emotion. Comparative research has gradually eroded the limbic model, and some scientists have proposed that certain individual emotions are represented separately in the brain. Evidence from humans consistent with this approach has recently been obtained by studies indicating that signals of fear and disgust are processed by distinct neural substrates. We review this research and its implications for theories of emotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human amygdala, basal ganglia and insula.
Figure 2: The Emotion Hexagon test of facial-expression recognition14.
Figure 3: Functional imaging studies of fear recognition.
Figure 4: Functional imaging studies of disgust recognition.

Similar content being viewed by others

References

  1. Ekman, P. Strong evidence for universals in facial expression: a reply to Russell's mistaken critique. Psychol. Bull. 115, 268 –287 (1994).

    CAS  PubMed  Google Scholar 

  2. Ekman, P. An argument for basic emotions. Cognition Emotion 6 , 169–200 (1992).

    Google Scholar 

  3. Aggleton, J. P. The Amygdala: A Functional Analysis (Oxford Univ. Press, Oxford, 2000).Book that includes several detailed reviews on the role of the amygdala in emotion.

    Google Scholar 

  4. Kluver, H. & Bucy, P. C. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42, 979–1000 (1939).

    Google Scholar 

  5. Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys . J. Comp. Physiol. Psychol. 49, 381– 391 (1956).

    CAS  PubMed  Google Scholar 

  6. Meunier, M., Bachevalier, J., Murray, E. A., Malkova, L. & Mishkin, M. Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur. J. Neurosci. 11, 4403–4418 (1999).

    CAS  PubMed  Google Scholar 

  7. Kalin, N. H., Shelton, S. E., Davidson, R. J. & Kelley, A. E. The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. J. Neurosci. 21, 2067–2074 (2001). A study showing that monkeys with bilateral (fibre-sparing) excitotoxin lesions of the amygdala show reduced acute fear responses (for example, reactions to snakes), whereas indices of a trait-like anxious temperament (for example, reactions to human intruders) were unaffected.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. LeDoux, J. E. Emotion: clues from the Brain. Annu. Rev. Psychol. 46, 209–235 (1995).

    CAS  PubMed  Google Scholar 

  9. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000). A recent review of the role of the amygdala in fear conditioning.

    CAS  PubMed  Google Scholar 

  10. Aggleton, J. P. in The Amygdala (ed. Aggleton, J. P.) 485– 504 (Wiley-Liss, New York, 1992).

    Google Scholar 

  11. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala . Nature 372, 669–672 (1994).Evidence of impaired recognition of fearful facial expressions in a patient with selective bilateral amygdala lesions, but not in patients with unilateral amygdala lesions.

    CAS  PubMed  Google Scholar 

  12. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. R. Fear and the human amygdala. J. Neurosci. 15, 5879– 5891 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adolphs, R. et al. Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37, 1111 –1117 (1999).

    CAS  PubMed  Google Scholar 

  14. Calder, A. J. et al. Facial emotion recognition after bilateral amygdala damage: differentially severe impairment of fear. Cogn. Neuropsychol. 13, 699–745 (1996).

    Google Scholar 

  15. Sprengelmeyer, R. et al. Knowing no fear. Proc. R. Soc. Lond. B 266, 2451–2456 (1999).

    CAS  Google Scholar 

  16. Jacobson, R. Disorders of facial recognition, social behaviour and affect after combined bilateral amygdalotomy and subcaudate tractotomy — a clinical and experimental study. Psychol. Med. 16, 439– 450 (1986).

    CAS  PubMed  Google Scholar 

  17. Young, A. W., Hellawell, D. J., van de Wal, C. & Johnson, M. Facial expression processing after amygdalectomy. Neuropsychologia 34, 31–39 ( 1996).

    CAS  PubMed  Google Scholar 

  18. Young, A. W. et al. Face processing impairments after amygdalotomy. Brain 118, 15–24 ( 1995).

    PubMed  Google Scholar 

  19. Broks, P. et al. Face processing impairmnents after encephalitis: amygdala damage and recognition of fear. Neuropsychologia 36, 59–70 (1998).

    CAS  PubMed  Google Scholar 

  20. Anderson, A. K. & Phelps, E. A. Expression without recognition: contributions of the human amygdala to emotional communication . Psychol. Sci. 11, 106– 111 (2000).

    CAS  PubMed  Google Scholar 

  21. Cahill, L. et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl. Acad. Sci. USA 93, 8016–8021 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cahill, L., Babinsky, R., Markowitsch, H. J. & McGaugh, J. L. The amygdala and emotional memory. Nature 377, 295–296 (1995).

    CAS  PubMed  Google Scholar 

  23. LaBar, K. S. & Phelps, E. A. Arousal-mediated memory consolidation: role of the medial temporal lobe in humans. Psychol. Sci. 9, 490–493 (1998).

    Google Scholar 

  24. Aggleton, J. P. The Amygdala (Wiley-Liss, New York, 1992).

    Google Scholar 

  25. Rolls, E. T. Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum. Neurobiol. 3, 209–222 (1984).

    CAS  PubMed  Google Scholar 

  26. Leonard, C. M., Rolls, E. T., Wilson, F. A. & Baylis, G. C. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15, 159–176 (1985).

    CAS  PubMed  Google Scholar 

  27. Brothers, L., Ring, B. & Kling, A. Response of neurons in the macaque amygdala to complex social-stimuli. Behav. Brain Res. 41, 199–213 (1990).

    CAS  PubMed  Google Scholar 

  28. Morris, J. S. et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121, 47–57 (1998).

    PubMed  Google Scholar 

  29. Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).References 28 and 29 are two functional imaging studies showing, first, that rCBF in the amygdala is positively related to the intensity of afraid facial expressions, and second, that rCBF in the extrastriate cortex is modulated by amygdala activity.

    CAS  PubMed  Google Scholar 

  30. Phillips, M. L. et al. A specific neural substrate for perceiving facial expressions of disgust. Nature 389, 495– 498 (1997).Functional MRI study showing different neural correlates to facial expressions of fear and disgust.

    CAS  PubMed  Google Scholar 

  31. Phillips, M. L. et al. Neural responses to facial and vocal expressions of fear and disgust. Proc. R. Soc. Lond. B 265, 1809 –1817 (1998).

    CAS  Google Scholar 

  32. Sprengelmeyer, R., Rausch, M., Eysel, U. T. & Przuntek, H. Neural structures associated with recognition of facial expressions of basic emotions. Proc. R. Soc. Lond. B 265, 1927–1931 (1998).

    CAS  Google Scholar 

  33. Breiter, H. C. et al. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17, 875–887 (1996).

    CAS  PubMed  Google Scholar 

  34. Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Phillips, M. L. et al. Time courses of left and right amygdalar responses to fearful facial expressions. Hum. Brain Mapp. 12, 193–202 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawashima, R. et al. The human amygdala plays an important role in gaze monitoring- A PET study. Brain 122, 779– 783 (1999).

    PubMed  Google Scholar 

  37. Adolphs, R., Tranel, D. & Damasio, A. R. The human amygdala in social judgment. Nature 393, 470–474 ( 1998).

    CAS  PubMed  Google Scholar 

  38. Anderson, A. K., Spencer, D. D., Fulbright, R. K. & Phelps, E. A. Contribution of the anteromedial temporal lobes to the evaluation of facial emotion. Neuropsychology 14, 526– 536 (2000).

    CAS  PubMed  Google Scholar 

  39. Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. J. Neurosci. 20, 2683–2690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adolphs, R. & Tranel, D. Intact recognition of emotional prosody following amygdala damage. Neuropsychologia 37, 1285–1292 (1999).

    CAS  PubMed  Google Scholar 

  41. Schmolck, H. & Squire, L. Impaired perception of facial emotions following bilateral damage to the anterior temporal lobe. Neuropsychology 15, 30–38 ( 2001).

    CAS  PubMed  Google Scholar 

  42. Hamann, S. B. et al. Recognizing facial emotion. Nature 379, 497–497 (1996).

    CAS  PubMed  Google Scholar 

  43. Ekman, P., Friesen, W. V. & Ellsworth, P. Emotion and the Human Face: Guidelines for Research and an Integration of Findings (Pergamon, New York, 1972).

    Google Scholar 

  44. Wright, C. I. et al. Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 12, 379–383 (2001).

    CAS  PubMed  Google Scholar 

  45. Whalen, P. J., Shin, L. M., McInerney, S. C. & Håkan, F. A functional MRI study of human amygdala responses to facial expressions of fear vs. anger. Emotion (in the press).

  46. Thomas, K. M. et al. Amygdala response to facial expressions in children and adults . Biol. Psychiatry 49, 309– 316 (2001).

    CAS  PubMed  Google Scholar 

  47. Maren, S. Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. Eur. J. Neurosci. 12, 4047–4054 (2000).

    CAS  PubMed  Google Scholar 

  48. Esteves, F., Dimberg, U. & Ohman, A. Automatically elicited fear — conditioned skin-conductance responses to masked facial expressions. Cognition Emotion 8, 393–413 (1994).

    Google Scholar 

  49. Morris, J. S., Ohman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467– 470 (1998).

    CAS  PubMed  Google Scholar 

  50. Rauch, S. L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry 47, 769–776 ( 2000).

    CAS  PubMed  Google Scholar 

  51. Rolls, E. T. in The Amygdala (ed. Aggleton, J. P.) (Wiley-Liss, New York, 1992).

    Google Scholar 

  52. Fredrikson, M. et al. Regional cerebral blood-flow during experimental phobic fear . Psychophysiology 30, 126– 130 (1993).

    CAS  PubMed  Google Scholar 

  53. Fredrikson, M., Wik, G., Annas, P., Ericson, K. & Stoneelander, S. Functional neuroanatomy of visually elicited simple phobic fear — additional data and theoretical analysis. Psychophysiology 32, 43–48 (1995).

    CAS  PubMed  Google Scholar 

  54. Lane, R. D. et al. Neuroanatomical correlates of pleasant and unpleasant emotion . Neuropsychologia 35, 1437– 1444 (1997).

    CAS  PubMed  Google Scholar 

  55. Lang, P. J. et al. Emotional arousal and activation of the visual cortex: an fMRI analysis. Psychophysiology 35, 199– 210 (1998).

    CAS  PubMed  Google Scholar 

  56. Taylor, S. F., Liberzon, I. & Koeppe, R. A. The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 38, 1415–1425 (2000).

    CAS  PubMed  Google Scholar 

  57. Hamann, S. B., Ely, T. D., Grafton, S. T. & Kilts, C. D. Amygdala activity related to enhanced memory for pleasant and aversive stimuli . Nature Neurosci. 2, 289– 293 (1999).Functional imaging study showing that the amygdala plays a neuromodulatory role in recognition memory for pictures of both aversive and pleasant emotional scenes.

    CAS  PubMed  Google Scholar 

  58. Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D. E. & Cahill, L. Event-related activation in the human amygdala associates with later memory for individual emotional experience. J. Neurosci. 20, RC99: 1–5 (2000).

    Google Scholar 

  59. Ketter, T. A. et al. Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch. Gen. Psychiatry 53, 59–69 (1996).

    CAS  PubMed  Google Scholar 

  60. Amaral, D. G., Price, D. L., Pitkanen, A. & Carmichael, S. T. in The Amygdala (ed. Aggleton, J. P.) 1– 66 (Wiley-Liss, New York, 1992).Review of the research addressing the anatomical organization of the primate amygdaloid complex.

    Google Scholar 

  61. Anderson, A. K. & Phelps, E. A. Intact recognition of vocal expressions of fear following bilateral lesions of the human amygdala . Neuroreport 9, 3607–3613 (1998).

    CAS  PubMed  Google Scholar 

  62. Scott, S. K. et al. Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature 385, 254–257 (1997).Case study of a patient with bilateral amygdala damage showing impaired recognition of auditory signals of fear and anger. A previous study had shown that this patient was impaired at recognizing facial cues of these same emotions (see reference 14).

    CAS  PubMed  Google Scholar 

  63. Starkstein, S. E., Federoff, J. P., Price, T. R., Leiguarda, R. C. & Robinson, R. G. Neuropsychological and neuroradiologic correlates of emotional prosody comprehension. Neurology 44, 515–522 (1994).

    CAS  PubMed  Google Scholar 

  64. Davis, M. in The Amygdala (ed. Aggleton, J. P.) 255–306 (Wiley-Liss, New York, 1992).

    Google Scholar 

  65. Morris, J. S., Scott, S. K. & Dolan, R. J. Saying it with feeling: neural responses to emotional vocalizations. Neuropsychologia 37, 1155 –1163 (1999).

    CAS  PubMed  Google Scholar 

  66. Isenberg, N. et al. Linguistic threat activates the human amygdala. Proc. Natl. Acad. Sci. USA 96, 10456– 10459 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Whalen, P. J. et al. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol. Psychiatry 44, 1219–1228 (1998).

    CAS  PubMed  Google Scholar 

  68. Halgren, E. in The Amygdala (ed. Aggleton, J. P.) 191–228 (Wiley-Liss, New York/Chichester, 1992).

    Google Scholar 

  69. Rapcsak, S. Z. et al. Fear recognition deficits after focal brain damage — a cautionary note. Neurology 54, 575– 581 (2000).

    CAS  PubMed  Google Scholar 

  70. O'Doherty, J., Rolls, E. T., Francis, S., Bowtell, R. & McGlone, F. Representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85, 1315–1321 (2001).

    CAS  PubMed  Google Scholar 

  71. Parkinson, J. A., Robbins, T. W. & Everitt, B. J. Dissociable roles of the centraland basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–13 (2000).

    CAS  PubMed  Google Scholar 

  72. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20, 4311– 4319 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hatfield, T., Han, J. S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256 –5265 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Malkova, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17, 6011–6020 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ono, T. & Nishijo, H. in The Amygdala (ed. Aggleton, J. P.) 167–190 (Wiley-Liss, New York, 1992).

    Google Scholar 

  76. Blair, R. J. R., Morris, J. S., Frith, C. D., Perrett, D. I. & Dolan, R. J. Dissociable neural responses to facial expressions of sadness and anger. Brain 122, 883–893 (1999).

    PubMed  Google Scholar 

  77. Phillips, M. L. et al. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Res. 83, 127–138 (1998).

    CAS  PubMed  Google Scholar 

  78. Kesler/West, M. L. et al. Neural substrates of facial emotion processing using fMRI . Brain Res Cogn Brain Res 11, 213– 226 (2001).

    CAS  Google Scholar 

  79. Rozin, P. & Fallon, A. E. A perspective on disgust. Psychol. Rev. 94, 23–41 (1987).Review of studies addressing several aspects of the emotion disgust, including contamination, the phylogeny and ontogeny of disgust, and the function of this emotion in human society.

    CAS  PubMed  Google Scholar 

  80. Rozin, P., Haidt, J. & McCauley, C. R. in Handbook of Emotions (eds Lewis, M. & Haviland, J.) 575–594 (Guilford, New York, 1993).

    Google Scholar 

  81. Garcia, J., Forthman Quick, D. & White, B. in Primary Neural Substrates of Learning and Behavioral Change (eds Alkon, D. L. & Farley, J.) 47– 61 (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  82. Sprengelmeyer, R. et al. Loss of disgust — perception of faces and emotions in Huntington's disease. Brain 119, 1647– 1665 (1996).A group study of facial and vocal expression processing in patients with Huntington's disease. Patients showed a disproportionately severe deficit in recognizing facial signals of disgust.

    PubMed  Google Scholar 

  83. Sprengelmeyer, R. et al. Recognition of facial expressions of basic emotions in Huntington's disease. Cogn. Neuropsychol. 14, 839– 879 (1997).

    Google Scholar 

  84. Gray, J. M., Young, A. W., Barker, W. A., Curtis, A. & Gibson, D. Impaired recognition of disgust in Huntington's disease gene carriers. Brain 120, 2029–2038 (1997).

    PubMed  Google Scholar 

  85. Braun, A. R. et al. The functional neuroanatomy of Tourettes syndrome — an FDG-PET study. 2. Relationships between regional cerebral metabolism and associated behavioral and cognitive features of the illness. Neuropsychopharmacology 13, 151–168 ( 1995).

    CAS  PubMed  Google Scholar 

  86. Rapoport, J. L. The neurobiology of obsessive-compulsive disorder. JAMA 260, 2888–2890 (1988).

    CAS  PubMed  Google Scholar 

  87. Rapoport, J. L. & Fiske, A. The new biology of obsessive-compulsive disorder: implications for evolutionary psychology . Perspect. Biol. Med. 41, 159– 175 (1998).

    CAS  PubMed  Google Scholar 

  88. Sprengelmeyer, R. et al. Disgust implicated in obsessive-compulsive disorder. Proc. R. Soc. Lond. B 264, 1767–1773 (1997).

    CAS  Google Scholar 

  89. Phillips, M. L. et al. A differential neural response to threatening and non-threatening negative facial expressions in paranoid and non-paranoid schizophrenics. Psychiatry Res. 92, 11–31 (1999).

    CAS  PubMed  Google Scholar 

  90. Augustine, J. R. Circuitry and functional aspects of the insula lobe in primates including humans. Brain Res. Rev. 22, 229– 244 (1996).

    CAS  PubMed  Google Scholar 

  91. Small, D. M. et al. Human cortical gustatory areas: a review of functional neuroimaging . Neuroreport 10, 7–14 ( 1999).

  92. Penfield, W. & Faulk, M. E. The insula: further observations of its function. Brain 78, 445– 470 (1955).

    CAS  PubMed  Google Scholar 

  93. Hernadi, I., Zaradi, K., Faludi, B. & Lenard, L. Disturbances of neophobia and taste-aversion learning after bilateral kainate microlesions in the rat pallidum. Behavioral Neuroscience 111, 137–146 (1997).

    CAS  PubMed  Google Scholar 

  94. Dunn, L. T. & Everitt, B. J. Double dissociations of the effects of amygdala and insular cortex lesions on conditioned taste aversion, passive-avoidance, and neophobia in the rat using the excitotoxin ibotenic acid. Behav. Neurosci. 102, 3–23 (1988).

    CAS  PubMed  Google Scholar 

  95. Rozin, P., Lowery, L. & Ebert, R. Varieties of disgust faces and the structure of disgust . J. Pers. Soc. Psychol. 66, 870– 881 (1994).

    CAS  PubMed  Google Scholar 

  96. Calder, A. J., Keane, J., Manes, F., Antoun, N. & Young, A. W. Impaired recognition and experience of disgust following brain injury. Nature Neurosci. 3, 1077– 1078 (2000).Case study of a patient with left-hemisphere damage affecting the insula and basal ganglia. The patient showed a marked selective impairment in recognizing both facial and vocal signals of disgust, and impaired experience of disgust.

    CAS  PubMed  Google Scholar 

  97. Phillips, M. L. et al. A differential neural response in obsessive-compulsive disorder patients with washing compared with checking symptoms to disgust. Psychol. Med. 30, 1037–1050 (2000).

    CAS  PubMed  Google Scholar 

  98. Shin, L. M. et al. Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biol. Psychiatry 48, 43–50 (2000).

    CAS  PubMed  Google Scholar 

  99. Power, M. & Dalgleish, T. Cognition and Emotion: From Order to Disorder (Psychology Press, Hove, 1997).

    Google Scholar 

  100. Chikama, M., McFarland, N. R., Amaral, D. G. & Haber, S. N. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J. Neurosci. 17, 9686–9705 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Weeks, R. A. et al. Cortical control of movement in Huntington's disease. Brain 120, 1569–1578 ( 1997).

    PubMed  Google Scholar 

  102. Boecker, H. et al. Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H2 15O-PET. Brain 122, 1651–1665 ( 1999).

    PubMed  Google Scholar 

  103. Lange, H. W. Quantitative changes of the telencephalon, diencephalon, and mesencephalon in Huntington's chorea, postcencephalitic, and idiopahthic Parkinsonism. Verh. Anat. Ges. (Jena) 75, 923–925 (1981).

    Google Scholar 

  104. Fennema-Notestine, C. et al. Global pattern of neuroanatomical changes in Huntington's disease with morphometric analyses of structural magnetic resonance imaging . Am. Acad. Neurol. A152–A153 (2000).

  105. Goodman, W. K. et al. The Yale-Brown obsessive compulsive scale. 1. Development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).

    CAS  PubMed  Google Scholar 

  106. Rauch, S. L. et al. Neural correlates of factor-analysed OCD symptom dimensions: a PET study. CNS Spectrums 3, 37– 43 (1998).

    Google Scholar 

  107. Baer, L. Factor-analysis of symptom subtypes of obsessive-compulsive disorder and their relation to personality and tic disorders. J. Clin. Psychiatry 55, 18–23 ( 1994).

    PubMed  Google Scholar 

  108. Degroot, C. M., Bornstein, R. A., Janus, M. D. & Mavissakalian, M. R. Patterns of obsessive-compulsive symptoms in Tourette subjects are independent of severity. Anxiety 1, 268– 274 (1994).

    Google Scholar 

  109. Petter, T., Richter, M. A. & Sandor, P. Clinical features distinguishing patients with Tourette's syndrome and obsessive-compulsive disorder from patients with obsessive-compulsive disorder without tics. J. Clin. Psychiatry 59, 456–459 (1998).

    CAS  PubMed  Google Scholar 

  110. Hornak, J., Rolls, E. T. & Wade, D. Face and voice expression identification in patients with emotion and behavioural changes following ventral frontal lobe damage . Neuropsychologia 34, 247– 261 (1996).

    CAS  PubMed  Google Scholar 

  111. Russell, J. A. & Bullock, M. Multidimensional scaling of emotional facial expressions: similarity from preschoolers to adults . J. Pers. Soc. Psychol. 48, 1290– 1298 (1985).

    Google Scholar 

  112. Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).

    Google Scholar 

  113. Watson, D. & Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 98, 219– 235 (1985).

    CAS  PubMed  Google Scholar 

  114. Adolphs, R., Russell, J. A. & Tranel, D. A role for the human amygdala in recognising emotional arousal from unpleasant stimuli. Psychol. Sci. 10, 167–171 (1999).

    Google Scholar 

  115. Johnsen, B. H., Thayer, J. F. & Hugdahl, K. Affective judgment of the Ekman faces — a dimensional approach. J. Psychophysiol. 9, 193– 202 (1995).

    Google Scholar 

  116. Calder, A. J., Burton, A. M., Miller, P., Young, A. W. & Akamatsu, S. A principal component analsysis of facial expressions. Vision Res. 41, 1179 –1208 (2001).

    CAS  PubMed  Google Scholar 

  117. Ekman, P. & Davidson, R. J. The Nature of Emotion Vol. 1, 7–47 (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  118. Panksepp, J. Affective Neuroscience: The Foundations of Human and Animal Emotions (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  119. Rolls, E. T. The Brain and Emotion (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  120. Rolls, E. T. A theory of emotion, and its application to understanding the neural basis of emotion. Cognition Emotion 4, 161– 190 (1990).

    Google Scholar 

  121. Gray, J. A. The Psychology of Fear and Stress (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  122. Davidson, R. J. Prolegomenon to the structure of ermotion — gleanings from neuropsychology . Cognition Emotion 6, 245– 268 (1992).

    Google Scholar 

  123. Davidson, R. J., Jackson, D. C. & Kalin, N. H. Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychol. Bull. 126, 890–909 (2000).

    PubMed  Google Scholar 

  124. Woodworth, R. S. & Schlosberg, H. Experimental Psychology (Henry Holt, New York, 1954).

    Google Scholar 

  125. Schlosberg, H. The description of facial expressions in terms of two dimensions. J. Exp. Psychol. 44, 229–237 (1952).

    CAS  PubMed  Google Scholar 

  126. Green, R. S. & Cliff, N. Multidimensional comparisons of structures of vocally and facially expressed emotions. Perception Psychophysics 17, 429–438 ( 1975).

    Google Scholar 

  127. Bush, L. E. U. Individual differences in multidimensional scaling of adjectives denoting feelings. J. Personality Social Psychol. 25, 50–57 (1973).

    Google Scholar 

  128. Furmark, T., Fischer, H., Wik, G., Larsson, M. & Fredrikson, M. The amygdala and individual differences in human fear conditioning. Neuroreport 8, 3957– 3960 (1997).

    CAS  PubMed  Google Scholar 

  129. Buchel, C. & Dolan, R. J. Classical fear conditioning in functional neuroimaging. Curr. Opin. Neurobiol. 10, 219–223 (2000).

    CAS  PubMed  Google Scholar 

  130. Fischer, H., Andersson, J. L. R., Furmark, T. & Fredrikson, M. Fear conditioning and brain activity: a positron emission tomography study in humans. Behav. Neurosci. 114, 671– 680 (2000).

    CAS  PubMed  Google Scholar 

  131. Buchel, C., Morris, J., Dolan, R. J. & Friston, K. J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947–957 ( 1998).Demonstration of amygdala involvement in conditioned fear in humans using event-related imaging techniques (see also reference 133).

    CAS  PubMed  Google Scholar 

  132. Buchel, C., Dolan, R. J., Armony, J. L. & Friston, K. J. Amygdala-hippocampal involvement in human aversive trace conditioning revealed through event-related functional magnetic resonance imaging. J. Neurosci. 19, 10869–10876 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E. & Phelps, E. A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937–945 ( 1998).

    CAS  PubMed  Google Scholar 

  134. Bechara, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 1115–1118 (1995).

    CAS  PubMed  Google Scholar 

  135. Labar, K. S., Ledoux, J. E., Spencer, D. D. & Phelps, E. A. Impaired fear conditioning following unilateral temporal lobectomy in humans . J. Neurosci. 15, 6846– 6855 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Knight, D. C., Smith, C. N., Stein, E. A. & Helmstetter, F. J. Functional MRI of human Pavlovian fear conditioning: patterns of activation as a function of learning. Neuroreport 10, 3665–3670 (1999).

    CAS  PubMed  Google Scholar 

  137. Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999). A review of the literature on conditioned fear.

    CAS  PubMed  Google Scholar 

  138. Calder, A. J., Young, A. W., Perrett, D. I., Etcoff, N. L. & Rowland, D. Categorical perception of morphed facial expressions. Visual Cogn. 3, 81– 117 (1996).

    Google Scholar 

  139. Young, A. W. et al. Megamixing facial expressions. Cognition 63, 271–313 (1997).

    CAS  PubMed  Google Scholar 

  140. Morris, J. S., Friston, K. J. & Dolan, R. J. Neural responses to salient visual stimuli. Proc. R. Soc. Lond. B 264, 769–775 (1997).

    CAS  Google Scholar 

  141. Morris, J. S., Friston, K. J. & Dolan, R. J. Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc. R. Soc. Lond. B 265, 649–657 (1998).

    CAS  Google Scholar 

  142. Brett, M., Christoff, K., Cusack, R. & Lancaster, J. Using the Talairach atlas with the MNI template. NeuroImage (in the press).

  143. Rorden, C. & Brett, M. Stereotaxic display of brain lesions . Behav. Neurol. (in the press).

Download references

Acknowledgements

We would like to thank Jill Keane, Brian Cox and Matthew Brett for their assistance in preparing this article, and Professor Paul Ekman for giving us permission to reproduce examples of the Ekman and Friesen (1976) faces.

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Limbic system

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCE

Emotion and the human brain

Emotion and the animal brain

Amygdala

Limbic system

Basal ganglia

Glossary

AMYGDALA

A small almond-shaped structure, comprising 13 nuclei, buried in the anterior medial section of each temporal lobe.

BASAL GANGLIA

A group of interconnected subcortical nuclei in the forebrain and midbrain that includes the striatum (putamen and caudate nucleus), globus pallidus, subthalamic nucleus, ventral tegmental area and substantia nigra.

FEAR CONDITIONING

A form of Pavlovian (classical) conditioning in which the animal learns that an innocuous stimulus (for example, an auditory tone — the conditioned stimulus or CS), comes to reliably predict the occurrence of a noxious stimulus (for example, foot shock — the unconditioned stimulus or US) following their repeated paired presentation. As a result of this procedure, presentation of the CS alone elicits conditioned fear responses previously associated with the noxious stimulus only.

VOXEL

Volume element. The smallest distinguishable, box-shaped part of a three-dimensional space.

EMOTIONAL STROOP TASK

A task in which participants are asked to name the colour of the font in which neutral and threat words are printed. Results show that colour-naming times for the threat words are slower than for neutral words. The generally accepted interpretation is that emotional words involuntarily capture attention, distracting the participants from naming.

OBSESSIVE-COMPULSIVE DISORDER

A psychological disorder in which the person is burdened by recurrent, persistent thoughts or ideas, and/or feels compelled to carry out a repetitive, ritualized behaviour. Anxiety is increased by attempts to resist the compulsion and is relieved by giving way to it.

TOURETTE'S SYNDROME

A rare genetic disorder, characterized by facial and vocal tics, and less frequently by verbal profanities.

CONDITIONED TASTE AVERSION

A form of memory in which a taste is associated with digestive malaise, leading to avoidance of the taste in subsequent presentations. This form of memory depends on the integrity of the insula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calder, A., Lawrence, A. & Young, A. Neuropsychology of fear and loathing. Nat Rev Neurosci 2, 352–363 (2001). https://doi.org/10.1038/35072584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35072584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing