Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The relative metabolic demand of inhibition and excitation

Abstract

By using the (14C)2-deoxyglucose method1, inhibition has been shown to be a metabolically active process at the level of the synapse2,3. This is supported by recent results from magnetic resonance spectroscopy that related the changes in neuroenergetics occurring with functional activation to neurotransmitter cycling4. However, inhibitory synapses are less numerous and strategically better located than excitatory synapses, indicating that inhibition may be more efficient, and therefore less energy-consuming, than excitation. Here we test this hypothesis using event-related functional magnetic resonance imaging in volunteers whose motor cortex was inhibited during the no-go condition of a go/no-go task, as demonstrated by transcranial magnetic stimulation. Unlike excitation, inhibition evoked no measurable change in the blood-oxygenation-level-dependent signal in the motor cortex, indicating that inhibition is less metabolically demanding. Therefore, the ‘activation’ seen in functional imaging studies probably results from excitation rather than inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motor evoked potentials in the no-go condition.
Figure 2: Haemodynamic response curves.

Similar content being viewed by others

References

  1. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 ( 1977).

    Article  CAS  Google Scholar 

  2. Ackermann, R. F., Finch, D. M., Babb, T. L. & Engel, J. Jr Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4, 251–264 (1984).

    Article  CAS  Google Scholar 

  3. Nudo, R. J. & Masterton, R. B. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J. Comp. Neurol. 245, 553– 565 (1986).

    Article  CAS  Google Scholar 

  4. Rothman, D. L. et al. In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate–glutamine neurotransmitter cycle and functional neuroenergetics. Phil. Trans. R. Soc. Lond. B 354, 1165–1177 (1999).

    Article  CAS  Google Scholar 

  5. Fairen, J.D. & Regodor, J. in Cerebral Cortex (eds Peters, A. & Jones, E.) 201–253 (Plenum, New York, 1984).

    Google Scholar 

  6. DeFelipe, J. & Farinas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563– 607 (1992).

    Article  CAS  Google Scholar 

  7. Beaulieu, C. & Colonnier, M. A laminar analysis of the number of round-asymmetrical and flat- symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. J. Comp. Neurol. 231, 180–189 ( 1985).

    Article  CAS  Google Scholar 

  8. Peters, A., Oalay, S. & Webster, H. The Fine Structure of the Nervous System. Neurons and their Supporting Cells (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  9. Koos, T. & Tepper, J. M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neurosci. 2, 467–472 ( 1999).

    Article  CAS  Google Scholar 

  10. Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 14878– 14883 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Leocani, L., Cohen, L., Wassermann, E., Ikome, K. & Hallett, M. Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123, 1161– 1173 (2000).

    Article  Google Scholar 

  12. Rosler, K. M., Etter, C., Truffert, A., Hess, C. W. & Magistris, M. R. Rapid cortical motor output map changes assessed by the triple stimulation technique. NeuroReport 10 , 579–583 (1999).

    Article  CAS  Google Scholar 

  13. Kujirai, T. et al. Corticocortical inhibition in human motor cortex. J. Physiol. (Lond.) 471, 501–519 (1993).

    Article  CAS  Google Scholar 

  14. Ziemann, U., Rothwell, J. C. & Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.) 496, 873–881 (1996).

    Article  CAS  Google Scholar 

  15. van Gelderen, P. et al. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner. Proc. Natl Acad. Sci. USA 92, 6906–6910 ( 1995).

    Article  ADS  CAS  Google Scholar 

  16. Deiber, M. P. et al. Cortical areas and the selection of movement: a study with positron emission tomography. Exp. Brain Res. 84, 393–402 (1991).

    Article  CAS  Google Scholar 

  17. Shima, K., Mushiake, H., Saito, N. & Tanji, J. Role for cells in the presupplementary motor area in updating motor plans. Proc. Natl Acad. Sci. USA 93, 8694–8698 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 ( 1996).

    Article  CAS  Google Scholar 

  19. Humberstone, M. et al. Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann. Neurol. 42, 632–637 (1997).

    Article  CAS  Google Scholar 

  20. Frackowiak, R. S., Lenzi, G. L., Jones, T. & Heather, J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J. Comput. Assist. Tomogr. 4, 727 –736 (1980).

    Article  CAS  Google Scholar 

  21. Raichle, M. E. Measurement of local cerebral blood flow and metabolism in man with positron emission tomography. Federation Proceedings 40, 2331–2334 (1981).

    CAS  PubMed  Google Scholar 

  22. Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA 83, 1140–1144 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 ( 1992).

    Article  ADS  CAS  Google Scholar 

  24. Silva, A. C., Lee, S. P., Yang, G., Iadecola, C. & Kim, S. G. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab. 19, 871–879 (1999).

    Article  CAS  Google Scholar 

  25. Rees, G. et al. Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6, 270–278 (1997).

    Article  CAS  Google Scholar 

  26. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA 95, 765–772 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Weeks, R. A., Gerloff, C., Dalakas, M. & Hallett, M. PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls. Exp. Brain Res. 128, 291–302 (1999).

    Article  CAS  Google Scholar 

  28. Mima, T. et al. Brain structures related to active and passive finger movements in man. Brain 122, 1989– 1997 (1999).

    Article  Google Scholar 

  29. Hallett, M., Shahani, B. T. & Young, R. R. EMG analysis of stereotyped voluntary movements in man. J. Neurol. Neurosurg. Psychiatry 38, 1154–1162 (1975).

    Article  CAS  Google Scholar 

  30. Thavenaz, P., Ruttimann, U. E. & Unser, M. Iterative multi-scale registration without landmarks. Proc. IEEE Int. Conf. on Image Processing Vol. III 228–231 (IEEE Computer Society Press, Los Alamitos, CA, 1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D.G. Schoenberg for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hallett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldvogel, D., van Gelderen, P., Muellbacher, W. et al. The relative metabolic demand of inhibition and excitation. Nature 406, 995–998 (2000). https://doi.org/10.1038/35023171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023171

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing