Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons

Abstract

In the development of the mammalian telencephalon, the genesis of neurons destined for the various layers of the cerebral cortex is preceded by the generation of a population of cells that comes to reside in the subplate and marginal zones1 (see ref. 2 for nomenclature). In the cat, these cells are present in large numbers during development, when their location is correlated with the arrival and accumulation of ingrowing axonal systems3–6 and with synapses7–12. However, as the brain matures, the cells disappear and the white matter and layer 1 of the adult emerge1,13,14. Their disappearance occurs in concert with the invasion of the cortical plate by the axonal systems and with the elimination of the synapses from the subplate1,4,7,9,12. Here we report that the subplate cells have properties typical of mature neurons. They have the ultra-structural appearance of neurons and receive synaptic contacts. They also have long projections and are immunoreactive for MAP2 (microtubule associated protein 2). Further, subpopulations are immunoreactive for one of several neuropeptides. These observations suggest that during the fetal and early postnatal development of the mammalian telencephalon the subplate cells function as neurons in synaptic circuitry that disappears by adulthood.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Luskin, M. B. & Shatz, C. J. J. Neurosci 5, 1062–1075 (1985).

    Article  CAS  Google Scholar 

  2. Sidman, R. L. & Rakic, P. Brain Res. 62, 1–35 (1973).

    Article  CAS  Google Scholar 

  3. Luskin, M. B. & Shatz, C. J. Soc. Neurosci. Abs. 10, 1079 (1984).

    Google Scholar 

  4. Shatz, C. J. & Luskin, M. B. J. Neurosci 6, 3655–3668 (1986).

    Article  CAS  Google Scholar 

  5. Rakic, P. Phil. Trans. R. Soc. B278, 245–260 (1977).

    Article  ADS  Google Scholar 

  6. Lund, R. D. & Mustari, M. J. J. comp. Neurol. 173, 289–306 (1977).

    Article  CAS  Google Scholar 

  7. Molliver, M. E., Kostovic, I. & Van Der Loos, H. Brain Res. 50, 403–407 (1973).

    Article  CAS  Google Scholar 

  8. Kostovic, I. & Molliver, M. E. Anat. Rec. 178, 395 (1974).

    Google Scholar 

  9. Cragg, B. G. J. comp. Neurol. 160, 147–166 (1975).

    Article  CAS  Google Scholar 

  10. Blue, M. E. & Parnavelas, J. G. J. Neurocytol. 12, 599–616 (1983).

    Article  CAS  Google Scholar 

  11. Blue, M. E. & Parnavelas, J. G. J. Neurocytol. 12, 697–712 (1983).

    Article  CAS  Google Scholar 

  12. Chun, J. J. M. & Shatz, C. J. Soc. Neurosci. Abstr. 9, 692 (1983).

    Google Scholar 

  13. Kostovic, I. & Rakic, P. J. Neurocytol. 9, 219–242 (1980).

    Article  CAS  Google Scholar 

  14. Parnavelas, J. G. & Edmunds, S. M. J. Neurocytol. 12, 863–871 (1983).

    Article  CAS  Google Scholar 

  15. Luskin, M. B. & Shatz, C. J. J. comp. Neurol. 242, 611–631 (1985).

    Article  CAS  Google Scholar 

  16. De Camilli, P., Miller, P. E., Navone, F., Theurkauf, W. E. & Vallee, R. B. Neuroscience 11, 819–846 (1984).

    Article  Google Scholar 

  17. Bernhardt, R., Huber, G. & Matus, A. J. Neurosci. 5, 977–991 (1985).

    Article  CAS  Google Scholar 

  18. Laemle, L. K., Feldman, S. C. & Lichtenstein, E. Brain Res. 251, 365–370 (1982).

    Article  CAS  Google Scholar 

  19. Somogyi, P. et al. J. Neurosci. 4, 2590–2603 (1984).

    Article  CAS  Google Scholar 

  20. Hendry, S. H. C., Jones, E. G. & Emson, P. C. J. Neurosci. 4, 2497–2517 (1984).

    Article  CAS  Google Scholar 

  21. Hendry, S. H. C. et al. Proc. natn. Acad. Sci. U.S.A. 81, 6526–6530 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Chan-Palay, V., Allen, Y. S., Lang, W., Haesler, U. & Polak, J. M. J. comp. Neurol. 238, 382–389 (1985).

    Article  CAS  Google Scholar 

  23. Hickey, T. L., Whikehart, D. R., Jackson, C. A., Hitchcock, P. F. & Peduzzi J. D. J. Neurosci Methods 8, 139–147 (1983).

    Article  CAS  Google Scholar 

  24. Raedler, E. & Raedler, A. Anat. Embryol. 154, 267–284 (1978).

    Article  CAS  Google Scholar 

  25. Caviness, V. S. Jr Devl Brain Res. 4, 293–302 (1982).

    Article  Google Scholar 

  26. Ramon Y Cajal, S. Histologie du System Nerveux de l'Homme et des Vertebres Vol. 2 (Maloine, Paris, 1911).

    Google Scholar 

  27. Bradford, R., Parnavelas, J. G. & Lieberman, A. R. J. comp. Neurol. 176, 121–132 (1977).

    Article  CAS  Google Scholar 

  28. Marin-Padilla, M. Z. Anat. EntwGesch. 134, 125–142 (1971).

    Article  Google Scholar 

  29. Marin-Padilla, M. Z. Anat. EntwGesch. 136, 125–142 (1972).

    Article  CAS  Google Scholar 

  30. Crandal, J. E., Jacobson, M. & Kosik, K. S. Devl Brain Res. 28, 127–133 (1986).

    Article  Google Scholar 

  31. Kostovic, I. & Fucic, A. Soc. Neurosci. Abstr. 11, 352 (1985).

    Google Scholar 

  32. Wise, S. P. & Jones, E. G. J. comp. Neurol. 178, 187–208 (1978).

    Article  CAS  Google Scholar 

  33. Innocenti, G. M. Science 212, 824–827 (1981).

    Article  ADS  CAS  Google Scholar 

  34. McLean, I. W. & Nakane, P. K. J. Histochem. Cytochem. 22, 1077–1083 (1974).

    Article  CAS  Google Scholar 

  35. Adams, J. C. J. Histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, J., Nakamura , M. & Shatz, C. Transient cells of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature 325, 617–620 (1987). https://doi.org/10.1038/325617a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325617a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing