Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels

Abstract

1,4-Dihydropyridines are a new class of compounds believed to bind specifically and with high affinity to voltage-dependent calcium channels1–5. They may be the first example of a ligand of use in the extraction1,2 and purification3 of the Ca channel. Although Ca channels and dihydropyridine receptors are found in many tissues, the richest and most convenient source is skeletal muscle4. Functionally, 1,4-dihydropyridines such as nifedipine and nitrendipine block Ca channels6–11; this effect is believed to form the basis for their clinical importance as Ca antagonists in relaxing vascular smooth muscle6. But where currents through Ca channels can be measured directly7–10, the block has required 100–1,000 times higher concentrations of dihydropyridine than necessary for the saturation of dihydropyridine binding sites1,5. This discrepancy has remained unresolved because the study of pharmacological effects on Ca channels has required intact cells, while it has been difficult to investigate binding in other than cell-free preparations. Here we describe a method for measuring dihydropyridine binding to intact skeletal muscle and we compare our results with voltage-clamp measurements of Ca-channel block. We conclude that less than a few per cent of the binding sites in skeletal muscle represent functional Ca channels, contrary to general belief.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fosset, M., Jaimovitch, E., Delpont, E. & Lazdunski, M. J. biol. Chem. 258, 6086–6092 (1983).

    CAS  PubMed  Google Scholar 

  2. Glossman, H. & Ferry, D. R. Archs Pharmac. 323, 279–291 (1983).

    Article  Google Scholar 

  3. Curtis, B. M. & Catterall, W. A. Biochemistry 23, 2113–2118 (1984).

    Article  CAS  Google Scholar 

  4. Gould, R. J., Murphy, K. M. & Snyder, S. H. Molec. Pharmac. 25, 235–241 (1984).

    CAS  Google Scholar 

  5. Bolger, G. T. et al. Biochem. biophys. Res. Commun. 104, 1604–1609 (1982).

    Article  CAS  Google Scholar 

  6. Fleckstein, A. Calcium Antagonism in Heart and Smooth Muscle (Wiley, New York, 1983).

    Google Scholar 

  7. Almers, W., Fink, R. & Palade, P. T. J. Physiol., Lond. 312, 117–207 (1981).

    Google Scholar 

  8. Kass, R. S. J. Pharmac. exp. Ther. 223, 446–456 (1982).

    CAS  Google Scholar 

  9. Lee, K. S. & Tsien, R. W. Nature 302, 790–794 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Almers, W. & McCleskey, E. W. J. Physiol., Lond. 353, 586–608 (1984).

    Google Scholar 

  11. Bean, B. P. Proc. natn. Acad. Sci. U.S.A. 81, 6388–6392 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Muller-Schweinitzer, E. & Neumann, P. J. J. cereb. Blood Flow Metab. 3, 356–361 (1983).

    Article  Google Scholar 

  13. Ferry, D. R., Goll, A. & Glossmann, H. Archs Pharmac. 323, 276–277 (1983).

    Article  CAS  Google Scholar 

  14. Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 17–47 (1977).

    Article  CAS  Google Scholar 

  15. Almers, W. & Levinson, S. R. J. Physiol., Lond. 247, 483–509 (1975).

    Article  CAS  Google Scholar 

  16. Mobley, B. A. & Eisenberg, B. R. J. gen. Physiol. 66, 31–46 (1975).

    Article  CAS  Google Scholar 

  17. Norman, R. I., Borsotto, M., Fosset, M. & Lazdunski, M. Biochem. biophys. Res. Commun. 111, 878–883 (1983).

    Article  CAS  Google Scholar 

  18. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

    Article  CAS  Google Scholar 

  19. Hess, P. & Tsien, R. W. Nature 309, 453–456 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Nachshen, D. A. & Blaustein, M. P. Molec. Pharmac. 16, 579–586 (1979).

    CAS  Google Scholar 

  21. Toll, L. J. biol. Chem. 257, 13189–13192 (1982).

    CAS  PubMed  Google Scholar 

  22. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol., Lond. 208, 607–644 (1970).

    Article  CAS  Google Scholar 

  23. Hodgkin, A. L. & Nakajima, S. J. Physiol., Lond. 221, 105–120 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, L., McCleskey, E. & Almers, W. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314, 747–751 (1985). https://doi.org/10.1038/314747a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314747a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing